90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A random six-phase switch regulates pneumococcal virulence via global epigenetic changes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptococcus pneumoniae (the pneumococcus) is the world’s foremost bacterial pathogen in both morbidity and mortality. Switching between phenotypic forms (or ‘phases’) that favour asymptomatic carriage or invasive disease was first reported in 1933. Here, we show that the underlying mechanism for such phase variation consists of genetic rearrangements in a Type I restriction-modification system (SpnD39III). The rearrangements generate six alternative specificities with distinct methylation patterns, as defined by single-molecule, real-time (SMRT) methylomics. The SpnD39III variants have distinct gene expression profiles. We demonstrate distinct virulence in experimental infection and in vivo selection for switching between SpnD39III variants. SpnD39III is ubiquitous in pneumococci, indicating an essential role in its biology. Future studies must recognize the potential for switching between these heretofore undetectable, differentiated pneumococcal subpopulations in vitro and in vivo. Similar systems exist in other bacterial genera, indicating the potential for broad exploitation of epigenetic gene regulation.

          Abstract

          Pneumococci can alternate between harmless and highly virulent forms. Here the authors show that such variation may be due to random rearrangements in a genetic locus encoding a restriction-modification system, resulting in epigenetic changes that affect expression of many genes.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

          REBASE is a comprehensive database of information about restriction enzymes, DNA methyltransferases and related proteins involved in the biological process of restriction-modification (R-M). It contains fully referenced information about recognition and cleavage sites, isoschizomers, neoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. Experimentally characterized homing endonucleases are also included. The fastest growing segment of REBASE contains the putative R-M systems found in the sequence databases. Comprehensive descriptions of the R-M content of all fully sequenced genomes are available including summary schematics. The contents of REBASE may be browsed from the web (http://rebase.neb.com) and selected compilations can be downloaded by ftp (ftp.neb.com). Additionally, monthly updates can be requested via email.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

            Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusions Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome of the bacterium Streptococcus pneumoniae strain R6.

              Streptococcus pneumoniae is among the most significant causes of bacterial disease in humans. Here we report the 2,038,615-bp genomic sequence of the gram-positive bacterium S. pneumoniae R6. Because the R6 strain is avirulent and, more importantly, because it is readily transformed with DNA from homologous species and many heterologous species, it is the principal platform for investigation of the biology of this important pathogen. It is also used as a primary vehicle for genomics-based development of antibiotics for gram-positive bacteria. In our analysis of the genome, we identified a large number of new uncharacterized genes predicted to encode proteins that either reside on the surface of the cell or are secreted. Among those proteins there may be new targets for vaccine and antibiotic development.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                30 September 2014
                : 5
                : 5055
                Affiliations
                [1 ]Department of Genetics, University of Leicester , Leicester LE1 7RH, UK
                [2 ]Dipartimento di Biotechnologie Mediche, Università di Siena , 53100 Siena, Italy
                [3 ]Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia 5005, Australia
                [4 ]Institute for Glycomics, Griffith University , Southport, Queensland 4215, Australia
                [5 ]Pacific Biosciences , Menlo Park, California 94025, USA
                [6 ]Bioinformatics and Biostatistics Analysis Support Hub, University of Leicester , Leicester LE1 7RH, UK
                [7 ]Department of Mathematics, University of Leicester , Leicester LE1 7RH, UK
                [8 ]These authors contributed equally to this work
                Author notes
                Article
                ncomms6055
                10.1038/ncomms6055
                4190663
                25268848
                d87ef28b-d446-446e-af8d-cf99944cee9d
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 19 March 2014
                : 21 August 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article