28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extra-Renal Manifestations of Complement-Mediated Thrombotic Microangiopathies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thrombotic microangiopathies (TMA) are rare but severe disorders, characterized by endothelial cell activation and thrombus formation leading to hemolytic anemia, thrombocytopenia, and organ failure. Complement over activation in combination with defects in its regulation is described in an increasing number of TMA and if primary for the disease denominated as atypical hemolytic-uremic syndrome. Although TMA predominantly affects the renal microvasculature, extra-renal manifestations are observed in 20% of patients including involvement of the central nerve system, cardiovascular system, lungs, skin, skeletal muscle, and gastrointestinal tract. Prompt diagnosis and treatment initiation are therefore crucial for the prognosis of disease acute phase and the long-term outcome. This review summarizes the available evidence on extra-renal TMA manifestations and discusses the role of acute and chronic complement activation by highlighting its complex interaction with inflammation, coagulation, and endothelial homeostasis.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: not found
          • Article: not found

          Atypical hemolytic-uremic syndrome.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.

            CD40 ligand (CD40L, CD154), a transmembrane protein structurally related to the cytokine TNF-alpha, was originally identified on stimulated CD4+ T cells, and later on stimulated mast cells and basophils. Interaction of CD40L on T cells with CD40 on B cells is of paramount importance for the development and function of the humoral immune system. CD40 is not only constitutively present on B cells, but it is also found on monocytes, macrophages and endothelial cells, suggesting that CD40L has a broader function in vivo. We now report that platelets express CD40L within seconds of activation in vitro and in the process of thrombus formation in vivo. Like TNF-alpha and interleukin-1, CD40L on platelets induces endothelial cells to secrete chemokines and to express adhesion molecules, thereby generating signals for the recruitment and extravasation of leukocytes at the site of injury. Our results indicate that platelets are not only involved in haemostasis but that they also directly initiate an inflammatory response of the vessel wall.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases.

              Kidney disease affects over 20 million people in the United States alone. Although the causes of renal failure are diverse, the glomerular filtration barrier is often the target of injury. Dysregulation of VEGF expression within the glomerulus has been demonstrated in a wide range of primary and acquired renal diseases, although the significance of these changes is unknown. In the glomerulus, VEGF-A is highly expressed in podocytes that make up a major portion of the barrier between the blood and urinary spaces. In this paper, we show that glomerular-selective deletion or overexpression of VEGF-A leads to glomerular disease in mice. Podocyte-specific heterozygosity for VEGF-A resulted in renal disease by 2.5 weeks of age, characterized by proteinuria and endotheliosis, the renal lesion seen in preeclampsia. Homozygous deletion of VEGF-A in glomeruli resulted in perinatal lethality. Mutant kidneys failed to develop a filtration barrier due to defects in endothelial cell migration, differentiation, and survival. In contrast, podocyte-specific overexpression of the VEGF-164 isoform led to a striking collapsing glomerulopathy, the lesion seen in HIV-associated nephropathy. Our data demonstrate that tight regulation of VEGF-A signaling is critical for establishment and maintenance of the glomerular filtration barrier and strongly supports a pivotal role for VEGF-A in renal disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                08 September 2014
                2014
                : 2
                : 97
                Affiliations
                [1] 1Department of Pediatrics I, Innsbruck Medical University , Innsbruck, Austria
                Author notes

                Edited by: Max Christoph Liebau, University Hospital of Cologne, Germany

                Reviewed by: Michal Malina, University Hospital Motol, Czech Republic; Se Jin Park, Ajou University School of Medicine, South Korea

                *Correspondence: Johannes Hofer, Department of Pediatrics I, Innsbruck Medical University, Anichstrasse 35, Innsbruck 6020, Austria e-mail: johannes.hofer@ 123456i-med.ac.at

                This article was submitted to Pediatric Nephrology, a section of the journal Frontiers in Pediatrics.

                Article
                10.3389/fped.2014.00097
                4157546
                25250305
                d883145a-aed2-4269-bc01-2d776d1f9c2f
                Copyright © 2014 Hofer, Rosales, Fischer and Giner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 July 2014
                : 25 August 2014
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 108, Pages: 16, Words: 11812
                Categories
                Pediatrics
                Review Article

                tma,ahus,complement,extra-renal tma,neurovascular complications,cardiovascular complication,gastrointestinal complications

                Comments

                Comment on this article