17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Universality in volume law entanglement of pure quantum states

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. Thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and cause a correction to this simple volume-law. To elucidate the size dependence of the entanglement entropy is of essential importance in linking quantum physics with thermodynamics, and in addressing recent experiments in ultra-cold atoms. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing thermal equilibrium. We further find that our formula applies universally to any sufficiently scrambled pure states representing thermal equilibrium, i.e., general energy eigenstates of non-integrable models and states after quantum quenches. Our universal formula can be exploited as a diagnostic of chaotic systems; we can distinguish integrable models from chaotic ones and detect many-body localization with high accuracy.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of many-body localization of interacting fermions in a quasi-random optical lattice

          We experimentally observe many-body localization of interacting fermions in a one-dimensional quasi-random optical lattice. We identify the many-body localization transition through the relaxation dynamics of an initially-prepared charge density wave. For sufficiently weak disorder the time evolution appears ergodic and thermalizing, erasing all remnants of the initial order. In contrast, above a critical disorder strength a significant portion of the initial ordering persists, thereby serving as an effective order parameter for localization. The stationary density wave order and the critical disorder value show a distinctive dependence on the interaction strength, in agreement with numerical simulations. We connect this dependence to the ubiquitous logarithmic growth of entanglement entropy characterizing the generic many-body localized phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measuring entanglement entropy in a quantum many-body system.

            Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
              Bookmark

              Author and article information

              Journal
              2017-03-08
              Article
              1703.02993
              d89465ea-1d70-4e72-bc69-161e338ab127

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              11pages, 5figures
              cond-mat.stat-mech cond-mat.quant-gas hep-th quant-ph

              Condensed matter,Quantum physics & Field theory,Quantum gases & Cold atoms,High energy & Particle physics

              Comments

              Comment on this article