56
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Aptamer Discovery and Applications

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aptamers are short, single-stranded DNA, RNA, or synthetic XNA molecules that can be developed with high affinity and specificity to interact with any desired targets. They have been widely used in facilitating discoveries in basic research, ensuring food safety and monitoring the environment. Furthermore, aptamers play promising roles as clinical diagnostics and therapeutic agents. This review provides update on the recent advances in this rapidly progressing field of research with particular emphasis on generation of aptamers and their applications in biosensing, biotechnology and medicine. The limitations and future directions of aptamers in target specific delivery and real-time detection are also discussed.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Aptamers as targeted therapeutics: current potential and challenges

          Nucleic acid aptamers offer several advantages over traditional antibodies, but their clinical translation has been delayed by several factors, including insufficient potency, lack of safety data and high production costs. Here, Zhou and Rossi provide an overview of aptamer generation, focusing on recent technological advances and clinical development, as well as challenges and lessons learned.
            • Record: found
            • Abstract: found
            • Article: not found

            Pegaptanib for neovascular age-related macular degeneration.

            Pegaptanib, an anti-vascular endothelial growth factor therapy, was evaluated in the treatment of neovascular age-related macular degeneration. We conducted two concurrent, prospective, randomized, double-blind, multicenter, dose-ranging, controlled clinical trials using broad entry criteria. Intravitreous injection into one eye per patient of pegaptanib (at a dose of 0.3 mg, 1.0 mg, or 3.0 mg) or sham injections were administered every 6 weeks over a period of 48 weeks. The primary end point was the proportion of patients who had lost fewer than 15 letters of visual acuity at 54 weeks. In the combined analysis of the primary end point (for a total of 1186 patients), efficacy was demonstrated, without a dose-response relationship, for all three doses of pegaptanib (P<0.001 for the comparison of 0.3 mg with sham injection; P<0.001 for the comparison of 1.0 mg with sham injection; and P=0.03 for the comparison of 3.0 mg with sham injection). In the group given pegaptanib at 0.3 mg, 70 percent of patients lost fewer than 15 letters of visual acuity, as compared with 55 percent among the controls (P<0.001). The risk of severe loss of visual acuity (loss of 30 letters or more) was reduced from 22 percent in the sham-injection group to 10 percent in the group receiving 0.3 mg of pegaptanib (P<0.001). More patients receiving pegaptanib (0.3 mg), as compared with sham injection, maintained their visual acuity or gained acuity (33 percent vs. 23 percent; P=0.003). As early as six weeks after beginning therapy with the study drug, and at all subsequent points, the mean visual acuity among patients receiving 0.3 mg of pegaptanib was better than in those receiving sham injections (P<0.002). Among the adverse events that occurred, endophthalmitis (in 1.3 percent of patients), traumatic injury to the lens (in 0.7 percent), and retinal detachment (in 0.6 percent) were the most serious and required vigilance. These events were associated with a severe loss of visual acuity in 0.1 percent of patients. Pegaptanib appears to be an effective therapy for neovascular age-related macular degeneration. Its long-term safety is not known. Copyright 2004 Massachusetts Medical Society.
              • Record: found
              • Abstract: found
              • Article: not found

              Paul Ehrlich's magic bullet concept: 100 years of progress.

              Exceptional advances in molecular biology and genetic research have expedited cancer drug development tremendously. The declared paradigm is the development of 'personalized and tailored drugs' that precisely target the specific molecular defects of a cancer patient. It is therefore appropriate to revisit the intellectual foundations of the development of such agents, as many have shown great clinical success. One hundred years ago, Paul Ehrlich, the founder of chemotherapy, received the Nobel Prize for Physiology or Medicine. His postulate of creating 'magic bullets' for use in the fight against human diseases inspired generations of scientists to devise powerful molecular cancer therapeutics.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                07 March 2019
                March 2019
                : 24
                : 5
                : 941
                Affiliations
                [1 ]College of Science, Harbin Institute of Technology, Shenzhen 518055, China
                [2 ]School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; boshiun@ 123456jhmi.edu
                [3 ]Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006 Zurich, Switzerland; mjuhas@ 123456imm.uzh.ch
                Author notes
                Author information
                https://orcid.org/0000-0002-3503-5161
                Article
                molecules-24-00941
                10.3390/molecules24050941
                6429292
                30866536
                d8c31161-98ac-41e6-8b70-bb4f4b191977
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 January 2019
                : 04 March 2019
                Categories
                Review

                aptamer,systematic evolution of ligands by exponential enrichment (selex),diagnostics,therapeutics,biosensor,nanorocket

                Comments

                Comment on this article

                Related Documents Log