3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Noise-Induced Backscattering in a Quantum Spin Hall Edge

      , ,
      Physical Review Letters
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum Spin Hall Effect in Graphene

          We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Z2 topological order and the quantum spin Hall effect.

            The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Helical Liquid and the Edge of Quantum Spin Hall Systems

                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                September 2018
                September 6 2018
                : 121
                : 10
                Article
                10.1103/PhysRevLett.121.106601
                d8d2363e-5f4d-4756-9379-d1b662d3e24f
                © 2018

                https://link.aps.org/licenses/aps-default-license

                https://link.aps.org/licenses/aps-default-accepted-manuscript-license

                History

                Comments

                Comment on this article