9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ISPAD Clinical Practice Consensus Guidelines 2018: Insulin treatment in children and adolescents with diabetes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: not found

          The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial

          Aims/hypothesis The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes. Methods Children and adults (n = 153) on CSII with HbA1c 7.5–9.5% (58.5–80.3 mmol/mol) were randomised to (CGM) a Sensor On or Sensor Off arm for 6 months. After 4 months’ washout, participants crossed over to the other arm for 6 months. Paediatric and adult participants were separately electronically randomised through the case report form according to a predefined randomisation sequence in eight secondary and tertiary centres. The primary outcome was the difference in HbA1c levels between arms after 6 months. Results Seventy-seven participants were randomised to the On/Off sequence and 76 to the Off/On sequence; all were included in the primary analysis. The mean difference in HbA1c was –0.43% (–4.74 mmol/mol) in favour of the Sensor On arm (8.04% [64.34 mmol/mol] vs 8.47% [69.08 mmol/mol]; 95% CI −0.32%, −0.55% [−3.50, −6.01 mmol/mol]; p < 0.001). Following cessation of glucose sensing, HbA1c reverted to baseline levels. Less time was spent with sensor glucose <3.9 mmol/l during the Sensor On arm than in the Sensor Off arm (19 vs 31 min/day; p = 0.009). The mean number of daily boluses increased in the Sensor On arm (6.8 ± 2.5 vs 5.8 ± 1.9, p < 0.0001), together with the frequency of use of the temporary basal rate (0.75 ± 1.11 vs 0.26 ± 0.47, p < 0.0001) and manual insulin suspend (0.91 ± 1.25 vs 0.70 ± 0.75, p < 0.018) functions. Four vs two events of severe hypoglycaemia occurred in the Sensor On and Sensor Off arm, respectively (p = 0.40). Conclusions/interpretation Continuous glucose monitoring was associated with decreased HbA1c levels and time spent in hypoglycaemia in individuals with type 1 diabetes using CSII. More frequent self-adjustments of insulin therapy may have contributed to these effects. Trial registration ClinicalTrials.gov registration no. NCT00598663. Funding The study was funded by Medtronic International Trading Sarl Switzerland.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes.

            Patients with insulin-dependent diabetes mellitus often have poor metabolic control during puberty. To determine whether puberty is associated with decreased insulin-stimulated glucose metabolism, we compared the results of euglycemic insulin-clamp studies in adults and prepubertal and pubertal children with and without insulin-dependent diabetes. In nondiabetic pubertal children, insulin-stimulated glucose metabolism (201 +/- 12 mg per square meter of body surface area per minute) was sharply reduced, as compared with that of prepubertal children and adults (316 +/- 34 and 290 +/- 21 mg per square meter, respectively; P less than 0.01), despite comparable hyperinsulinemia (insulin levels of 80 to 90 microU per milliliter). Similarly, the response to insulin was 25 to 30 percent lower in the diabetic pubertal children than in the diabetic prepubertal children (P less than 0.05) and adults (P = 0.07). At each stage of development, the stimulating effect of insulin on glucose metabolism was decreased by 33 to 42 percent in the children with diabetes (P less than 0.01). In all the groups of children studied, the response to insulin was inversely correlated with mean 24-hour levels of growth hormone (r = -0.52, P = 0.01). Among the diabetic children, the glycosylated hemoglobin levels were substantially higher in the pubertal children than in the prepubertal children (P less than 0.02), although the daily insulin doses tended to be higher. These data suggest that insulin resistance occurs during puberty in both normal children and children with diabetes. The combined adverse effects of puberty and diabetes on insulin action may help explain why control of glycemia is so difficult to achieve in adolescent patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use.

              In recent years, analogs of human insulin have been engineered with the aim of improving therapy for people with diabetes. To ensure that the safety profile of the human hormone is not compromised by the molecular modifications, the toxico-pharmacological properties of insulin analogs should be carefully monitored. In this study, we compared the insulin and IGF-I receptor binding properties and metabolic and mitogenic potencies of insulin aspart (B28Asp human insulin), insulin lispro (B28Lys,B29Pro human insulin), insulin glargine (A21Gly,B31Arg,B32Arg human insulin), insulin detemir (NN304) [B29Lys(epsilon-tetradecanoyl), desB30 human insulin], and reference insulin analogs. Receptor affinities were measured using purified human receptors, insulin receptor dissociation rates were determined using Chinese hamster ovary cells overexpressing the human insulin receptor, metabolic potencies were evaluated using primary mouse adipocytes, and mitogenic potencies were determined in human osteosarcoma cells. Metabolic potencies correlated well with insulin receptor affinities. Mitogenic potencies in general correlated better with IGF-I receptor affinities than with insulin receptor off-rates. The 2 rapid-acting insulin analogs aspart and lispro resembled human insulin on all parameters, except for a slightly elevated IGF-I receptor affinity of lispro. In contrast, the 2 long-acting insulin analogs, glargine and detemir, differed significantly from human insulin. The combination of the B31B32diArg and A21Gly substitutions provided insulin glargine with a 6- to 8-fold increased IGF-I receptor affinity and mitogenic potency compared with human insulin. The attachment of a fatty acid chain to LysB29 provided insulin detemir with reduced receptor affinities and metabolic and mitogenic potencies but did not change the balance between mitogenic and metabolic potencies. The safety implications of the increased growth-stimulating potential of insulin glargine are unclear. The reduced in vitro potency of insulin detemir might explain why this analog is not as effective on a molar basis as human insulin in humans.
                Bookmark

                Author and article information

                Journal
                Pediatric Diabetes
                Pediatr Diabetes
                Wiley
                1399543X
                October 2018
                October 2018
                October 01 2018
                : 19
                : 115-135
                Affiliations
                [1 ]Kinder- und Jugendkrankenhaus AUF DER BULT; Diabetes-Zentrum für Kinder und Judendliche; Hannover Germany
                [2 ]The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes; Schneider Children's Medical Center of Israel; Petah Tikva Israel
                [3 ]Department of Pediatric Endocrinology; Stanford University; Stanford California
                [4 ]Department of Children's Diabetology; SMK Medical University of Silesia; Katowice Poland
                [5 ]Department of Endocrinology; DiaCare - Advance Diabetes Care Center; Ahmedabad India
                [6 ]Department of Pediatrics; Nihon University School of Medicine; Tokyo Japan
                [7 ]Department Endocrinology, Diabetes and Metabolic Diseases; University Children's Hospital Ljubljana, and Faculty of Medicine, University of Ljubljana; Ljubljana Slovenia
                [8 ]Department of Pediatrics, NU Hospital Group; Uddevalla, Sahlgrenska Academy, Gothenburg University; Gothenburg Sweden
                [9 ]Institute of Maternal and Child Research (IDMI); School of Medicine, University de Chile; Santiago Chile
                Article
                10.1111/pedi.12718
                29999222
                d8d8bf63-9f54-49d1-a182-44318360f282
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article