5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cat Mandible (I): Anatomical Basis to Avoid Iatrogenic Damage in Veterinary Clinical Practice

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Nowadays, cats are one of the most common companion animals. They differ from dogs in some important aspects. However, most of the veterinary clinics are oriented towards the care and treatment of dogs, where the cat patient is clinically treated like a small dog. The cat mandible and related structures have some particularities that should be taken into account, when treating a cat, to avoid any unintended medical (iatrogenic) damage. The feline mandible has fewer teeth than a dog’s one, but tooth roots and the neurovascular supply account for up 70% of the volume of the mandibular body. This fact makes mandibular fracture repair challenging. In addition, the cat mandible has a prominent angular process that, when the cat is under anesthesia and his mouth is wide open (during oral or transoral manipulation), compresses the maxillary artery (that supplies blood to the brain) inducing temporal or permanent blindness and/or deafness. Other particularities of the cat jaw are also addressed to get a comprehensive knowledge of its functional anatomy, essential to an effective feline clinical practice.

          Abstract

          Cats are one of our favourite pets in the home. They differ considerably from dogs but are usually treated clinically as small dogs, despite some anatomical and physiological dissimilarities. Their mandible is small and has some peculiarities relative to the dentition (only three incisors, a prominent canine, two premolars and one molar); a conical and horizontally oriented condyle, and a protudent angular process in its ventrocaudal part. Most of the body of the mandible is occupied by the mandibular dental roots and the mandibular canal that protects the neurovascular supply: the inferior alveolar artery and vein, and the inferior alveolar nerve that exits the mandible rostrally as the mental nerves. They irrigate and innervate all the teeth and associated structures such as the lips and gingiva. Tooth roots and the mandibular canal account for up to 70% of the volume of the mandibular body. Consequently, when fractured it is difficult to repair without invading the dental roots or vascular structures. Gaining a comprehensive anatomical knowledge and good clinical practice (such as image diagnosis before and post-surgery) will help in the awareness and avoidance of iatrogenic complications in day-to-day feline clinical practice.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          TMJ anatomy and animal models.

          S Herring (2003)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sensory Nerves Affect Bone Regeneration in Rabbit Mandibular Distraction Osteogenesis

            Objectives: To investigate the effects of inferior alveolar nerve on new bone formation in rabbit mandibular distraction osteogenesis. Methods: 20 New Zealand White rabbits underwent bilateral distraction osteogenesis with a rate of 1 mm/day. The inferior alveolar nerve of one side was resected under the surgical microscope, with the inferior alveolar vascular intact. The contralateral side received sham operation. The rabbits were sacrificed at consolidation time of 28 days. The regenerate callus underwent radiograph examination, dual-energy X-ray absorptiometry, haematoxylin and eosin staining and histomorphometric analysis. A paired t-test was performed using SPSS 16.0 software package. Results: The BMD of the new bone in the distraction gap on the denervation side of mandibular was significantly lower (P<0.05) than on the control side. The histological investigation showed that the bone trabeculae were dis-arrayed containing dispersed cartilage cells on the denervation side, whereas the bone trabeculae were orderly with rich blood vessels and no cartilage cell on the control side. Both new bone volume and the thickness of new trabeculae were significantly lower on the denervation side than on the control side (P < 0.05). Conclusion: The loss of the sensory nerves could result in a decrease of the new bone quality during the mandibular distraction osteogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inferior alveolar nerve transection inhibits increase in osteoclast appearance during experimental tooth movement.

              To evaluate the role of sensory nerve innervation in alveolar bone remodeling during experimental tooth movement, we investigated histomorphometrically the influence of sensory nerve denervation on bone metabolism. Seven days after inferior alveolar nerve (IAN) transection or a sham operation in rats, orthodontic force was applied to the animals by inserting an elastic module interproximally between the lower first molar and second molar. Twenty-four hours after the application of the orthodontic force, osteoclast number, osteoclast surface, and osteoblast surface were measured on the trabecular bone surface in the interradicular septum of the lower second molar. The distribution of sensory nerve fibers immunoreactive to antibody against calcitonin gene-related peptide (CGRP) was also evaluated. In the sham-operated rats, CGRP-immunoreactive nerves were observed to be distributed along the blood vessels in the trabecular alveolar bone. Experimental tooth movement resulted in a fivefold increase in the number of osteoclasts and in increased immunoreactivity of nerves to anti-CGRP in the trabecular bone. However, IAN transection depleted the immunoreactivity to anti-CGRP and reduced the osteoclast number and osteoclast surface significantly. On the other hand, in the rats that were not subjected to experimental tooth movement, there was no significant difference in osteoclast number between sham-operated and IAN-transected rats. Significant changes were not observed in osteoblast surfaces associated with experimental tooth movement or nerve transection. These findings suggest that sensory nerves play an important role in regulating bone resorptive activity during experimental tooth movement.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                05 February 2021
                February 2021
                : 11
                : 2
                : 405
                Affiliations
                [1 ]Unit of Veterinary Anatomy and Embryology, Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary Sciences, University of Santiago de Compostela–Campus of Lugo, 27002 Lugo, Spain; mar.yllera@ 123456usc.es
                [2 ]Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela–Campus of Lugo, 27002 Lugo, Spain; diana.alonso.penarando@ 123456rai.usc.es
                [3 ]DVM at Veterinary Clinic Villaluenga, Villaluenga de la Sagra, 45520 Toledo, Spain
                Author notes
                [* ]Correspondence: matilde.lombardero@ 123456usc.es ; Tel.: +34-982-822-333
                Author information
                https://orcid.org/0000-0003-2088-1207
                https://orcid.org/0000-0002-3288-6008
                Article
                animals-11-00405
                10.3390/ani11020405
                7915868
                33562642
                d8e4e24e-ba49-4635-8995-5e1018d63683
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 December 2020
                : 29 January 2021
                Categories
                Review

                anatomy,feline,lower jaw,neurovascular supply,temporomandibular joint,tooth

                Comments

                Comment on this article