6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vitamin C Sensitizes Pancreatic Cancer Cells to Erastin-Induced Ferroptosis by Activating the AMPK/Nrf2/HMOX1 Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ferroptosis is a type of regulated cell death that displays a promising therapeutic pathway for drug-resistant tumor cells. However, some pancreatic cancer (PC) cells are less sensitive to erastin-induced ferroptosis, and normal pancreatic cells are susceptible to this newly discovered cell death. Therefore, there is an urgent need to find drugs to enhance the sensitivity of these PC cells to erastin while limiting side effects. Here, we found that the oxidized form of vitamin C-dehydroascorbic acid (DHA) can be transported into PC cells expressing high levels of GLUT1, resulting in ferroptosis. Moreover, pharmacological vitamin C combined with erastin can synergistically induce ferroptosis of PC cells involving glutathione (GSH) reduction and ferrous iron accumulation while inhibiting the cytotoxicity of normal cells. Mechanistically, as a direct system Xc inhibitor, erastin can directly suppress the synthesis of GSH, and the recycling of vitamin C and DHA is performed through GSH consumption, which is denoted as the classical mode. Furthermore, oxidative stress induced by erastin and vitamin C could enhance the expression of HMOX1 via the AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway to increase the labile iron level, which is named the nonclassical mode. In vivo experiments showed that erastin and vitamin C can significantly slow tumor growth in PC xenografts. In summary, the combination of erastin and vitamin C exerts a synergistic effect of classical and nonclassical modes to induce ferroptosis in PC cells, which may provide a promising therapeutic strategy for PC.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: an iron-dependent form of nonapoptotic cell death.

            Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of ferroptotic cancer cell death by GPX4.

              Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2022
                19 July 2022
                : 2022
                : 5361241
                Affiliations
                1Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China 212001
                2Medical School of Chinese PLA, Beijing, China 100853
                3Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China 100853
                4Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China 212013
                Author notes

                Academic Editor: L szl Vir g

                Author information
                https://orcid.org/0000-0001-8544-5006
                https://orcid.org/0000-0001-5861-6295
                https://orcid.org/0000-0002-7969-7490
                https://orcid.org/0000-0002-0469-8990
                https://orcid.org/0000-0002-0213-2248
                https://orcid.org/0000-0002-7006-0741
                https://orcid.org/0000-0001-8803-4595
                https://orcid.org/0000-0002-5587-5520
                Article
                10.1155/2022/5361241
                9338737
                35915609
                d8eb21a8-71e8-4e01-9cda-05232675be34
                Copyright © 2022 Yawen Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 January 2022
                : 4 April 2022
                : 17 May 2022
                Funding
                Funded by: Jiangsu Key R&D Program Social Development Project
                Award ID: SH2018033
                Award ID: BE2018689
                Funded by: Jiangsu Provincial Health Commission
                Award ID: M2020011
                Funded by: National Natural Science Foundation of China
                Award ID: 81672402
                Award ID: 82072754
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article