Blog
About

32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In obesity, white adipose tissue (WAT) inflammation is linked to insulin resistance. Increased adipocyte chemokine (C-C motif) ligand 2 (CCL2) secretion may initiate adipose inflammation by attracting the migration of inflammatory cells into the tissue. Using an unbiased approach, we identified adipose microRNAs (miRNAs) that are dysregulated in human obesity and assessed their possible role in controlling CCL2 production. In subcutaneous WAT obtained from 56 subjects, 11 miRNAs were present in all subjects and downregulated in obesity. Of these, 10 affected adipocyte CCL2 secretion in vitro and for 2 miRNAs (miR-126 and miR-193b), regulatory circuits were defined. While miR-126 bound directly to the 3′-untranslated region of CCL2 mRNA, miR-193b regulated CCL2 production indirectly through a network of transcription factors, many of which have been identified in other inflammatory conditions. In addition, overexpression of miR-193b and miR-126 in a human monocyte/macrophage cell line attenuated CCL2 production. The levels of the two miRNAs in subcutaneous WAT were significantly associated with CCL2 secretion (miR-193b) and expression of integrin, α-X, an inflammatory macrophage marker (miR-193b and miR-126). Taken together, our data suggest that miRNAs may be important regulators of adipose inflammation through their effects on CCL2 release from human adipocytes and macrophages.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.

          Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein-1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs in development and disease.

            MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3' untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular networks as sensors and drivers of common human diseases.

              The molecular biology revolution led to an intense focus on the study of interactions between DNA, RNA and protein biosynthesis in order to develop a more comprehensive understanding of the cell. One consequence of this focus was a reduced attention to whole-system physiology, making it difficult to link molecular biology to clinical medicine. Equipped with the tools emerging from the genomics revolution, we are now in a position to link molecular states to physiological ones through the reverse engineering of molecular networks that sense DNA and environmental perturbations and, as a result, drive variations in physiological states associated with disease.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                August 2012
                17 July 2012
                : 61
                : 8
                : 1986-1993
                Affiliations
                1RIKEN Omics Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
                2Department of Medicine, Huddinge, Lipid Laboratory, Karolinska Institutet, Stockholm, Sweden
                3Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
                4INSERM U895, Mediterranean Center of Molecular Medicine, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France
                5Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
                6Akademikliniken, Stockholm, Sweden
                7Department of Biosciences and Nutrition, Huddinge, Karolinska Institutet, Stockholm, Sweden
                Author notes
                Corresponding authors: Peter Arner (experimental and clinical correspondence), peter.arner@ 123456ki.se , and Carsten O. Daub (computational correspondence), daub@ 123456gsc.riken.jp .

                E.A. and N.M. contributed equally to this study.

                Article
                1508
                10.2337/db11-1508
                3402332
                22688341
                © 2012 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                Product
                Categories
                Obesity Studies

                Endocrinology & Diabetes

                Comments

                Comment on this article