28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introns in a wide range of organisms including plants, animals and fungi are able to increase the expression of the gene that they are contained in. This process of intron-mediated enhancement (IME) is most thoroughly studied in Arabidopsis thaliana, where it has been shown that enhancing introns are typically located near the promoter and are compositionally distinct from downstream introns. In this study, we perform a comprehensive comparative analysis of several sequenced plant genomes. We find that enhancing sequences are conserved in the multi-cellular plants but are either absent or unrecognizable in algae. IME signals are preferentially located towards the 5′-end of first introns but also appear to be enriched in 5′-UTRs and coding regions near the transcription start site. Enhancing introns are found most prominently in genes that are highly expressed in a wide range of tissues. Through site-directed mutagenesis in A. thaliana, we show that IME signals can be inserted or removed from introns to increase or decrease gene expression. Although we do not yet know the specific mechanism of IME, the predicted signals appear to be both functional and highly conserved.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information

          GeneCodis is a web server application for functional analysis of gene lists that integrates different sources of information and finds modular patterns of interrelated annotations. This integrative approach has proved to be useful for the interpretation of high-throughput experiments and therefore a new version of the system has been developed to expand its functionality and scope. GeneCodis now expands the functional information with regulatory patterns and user-defined annotations, offering the possibility of integrating all sources of information in the same analysis. Traditional singular enrichment is now permitted and more organisms and gene identifiers have been added to the database. The application has been re-engineered to improve performance, accessibility and scalability. In addition, GeneCodis can now be accessed through a public SOAP web services interface, enabling users to perform analysis from their own scripts and workflows. The application is freely available at http://genecodis.dacya.ucm.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapidly regulated genes are intron poor.

            We show that genes with rapidly changing expression levels in response to stress contain significantly lower intron densities in yeasts, thale cress and mice. Therefore, we propose that introns can delay regulatory responses and are selected against in genes whose transcripts require rapid adjustment for survival of environmental challenges. These findings could provide an explanation for the apparent extensive intron loss during the evolution of some eukaryotic lineages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A quantitative analysis of intron effects on mammalian gene expression.

              In higher eukaryotes, intron-containing and intronless versions of otherwise identical genes can exhibit dramatically different expression profiles. Introns and the act of their removal by the spliceosome can affect gene expression at many different levels, including transcription, polyadenylation, mRNA export, translational efficiency, and the rate of mRNA decay. However, the extent to which each of these steps contributes to the overall effect of any one intron on gene expression has not been rigorously tested. Here we report construction and initial characterization of a luciferase-based reporter system for monitoring the effects of individual introns and their position within the gene on protein expression in mammalian cells. Quantitative analysis of constructs containing human TPI intron 6 at two different positions within the Renilla luciferase open reading frame revealed that this intron acts primarily to enhance mRNA accumulation. Spliced mRNAs also exhibited higher translational yields than did intronless transcripts. However, nucleocytoplasmic mRNA distribution and mRNA stability were largely unaffected. These findings were extended to two other introns in a TCR-beta minigene.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                July 2011
                July 2011
                22 March 2011
                22 March 2011
                : 39
                : 13
                : 5328-5337
                Affiliations
                1Genome Center and 2Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 530 754 4989; Email: ifkorf@ 123456ucdavis.edu
                Article
                gkr043
                10.1093/nar/gkr043
                3141229
                21427088
                d8f7e032-92fa-4b48-8cd1-61e13612bed6
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 October 2010
                : 15 January 2011
                : 17 January 2011
                Page count
                Pages: 10
                Categories
                Computational Biology

                Genetics
                Genetics

                Comments

                Comment on this article