25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Composition and structural characteristics of humified fractions during the co-composting process of spent mushroom substrate and wheat straw.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A spent mushroom substrate (SMS) was mixed with wheat straw (WS) in three proportions, C1 (2:1), C2 (4:1), and C3 (6:1), and composted for 90 days in static piles with periodic turning to ensure adequate aeration. Samples from each pile were collected periodically (after 0, 30, 60, and 90 days), and the humic acid-like fractions (HAs) were isolated to determine their elemental composition (C, H, N, S, and O), acidic functional group (carboxylic and phenolic) content, and structural and functional characteristics using spectroscopic methods including ultraviolet-visible, Fourier transform infrared (FTIR), and fluorescence. The results of elemental and functional group analyses show that, with increasing time of composting, the N, O, and acidic functional group contents of HAs increase, whereas their C and H contents and C/N ratio decrease. The analysis of FTIR and fluorescence spectra shows that, with increasing composting time, the presence of aliphatic and polysaccharide-like structures in HAs decreases, whereas oxygenation, polycondensation, and polymerization increase. These results suggest that the chemical and structural characteristics of the HA fractions in the final composts resemble those typical of native soil HAs, which indicate that an adequate degree of maturity and stability is achieved after the end of composting. The results of the present study confirm that composting is an appropriate treatment to transform fresh organic matter (OM) in SMS into humified forms, thus enhancing their quality, agronomic efficiency, and environmental safety as a soil OM resource for application as soil amendment.

          Related collections

          Author and article information

          Journal
          J. Agric. Food Chem.
          Journal of agricultural and food chemistry
          American Chemical Society (ACS)
          1520-5118
          0021-8561
          Nov 25 2009
          : 57
          : 22
          Affiliations
          [1 ] Dipartimento di Biologia e Chimica Agroforestale ed Ambientale, University of Bari, Via Amendola 165/A, 70126 Bari, Italy.
          Article
          10.1021/jf903014f
          19860371
          d8fe57f2-5ad4-4bce-a779-71b1cd542c93
          History

          Comments

          Comment on this article