56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine ( Pinus pinaster Ait)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported.

          Results

          This aspect was investigated in a conifer, maritime pine ( Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family.

          Conclusions

          The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Building lipid barriers: biosynthesis of cutin and suberin.

          Cutin and suberin are the polymer matrices for lipophilic cell wall barriers. These barriers control the fluxes of gases, water and solutes, and also play roles in protecting plants from biotic and abiotic stresses and in controlling plant morphology. Although they are ubiquitous, cutin and suberin are the least understood of the major plant extracellular polymers. The use of forward and reverse genetic approaches in Arabidopsis has led to the identification of oxidoreductase and acyltransferase genes involved in the biosynthesis of these polymers. However, major questions about the underlying polymer structure, biochemistry, and intracellular versus extracellular assembly remain to be resolved. The analysis of plant lines with modified cutins and suberins has begun to reveal the inter-relationships between the composition and function of these polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sealing plant surfaces: cuticular wax formation by epidermal cells.

            The vital importance of plant surface wax in protecting tissue from environmental stresses is reflected in the huge commitment of epidermal cells to cuticle formation. During cuticle deposition, a massive flux of lipids occurs from the sites of lipid synthesis in the plastid and the endoplasmic reticulum to the plant surface. Recent genetic studies in Arabidopsis have improved our understanding of fatty acid elongation and of the subsequent modification of the elongated products into primary alcohols, wax esters, secondary alcohols, and ketones, shedding light on the enzymes involved in these pathways. In contrast, the biosynthesis of alkanes is still poorly understood, as are the mechanisms of wax transport from the site of biosynthesis to the cuticle. Currently, nothing is known about wax trafficking from the endoplasmic reticulum to the plasma membrane, or about translocation through the cell wall to the cuticle. However, a first breakthrough toward an understanding of wax export recently came with the discovery of ATP binding cassette (ABC) transporters that are involved in releasing wax from the plasma membrane into the apoplast. An overview of our present knowledge of wax biosynthesis and transport and the regulation of these processes during cuticle assembly is presented, including the evidence for coordination of cutin polyester and wax production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

              The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these diverse functions are mediated by regulating metabolism of lipid and/or cell wall components.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2013
                1 July 2013
                : 13
                : 95
                Affiliations
                [1 ]INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
                [2 ]Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
                [3 ]Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000, Bordeaux, France
                [4 ]CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000, Bordeaux, France
                [5 ]Instituto Biología Vegetal y Biotecnología, Universidad de Talca, 2 Norte 685, Talca, Chile
                [6 ]CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398, Montpellier Cedex 5, France
                Article
                1471-2229-13-95
                10.1186/1471-2229-13-95
                3728238
                23815794
                d900ab66-b803-4239-9204-b82c0c21795b
                Copyright ©2013 Le Provost et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 December 2012
                : 28 June 2013
                Categories
                Research Article

                Plant science & Botany
                cuticle biosynthesis,drought,edaphic stress,field experiment,gene expression,maritime pine

                Comments

                Comment on this article