10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co-regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1-MMP (MT1-MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell locomotion and focal adhesions are regulated by substrate flexibility.

            Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial progenitor cells: characterization and role in vascular biology.

              Infusion of different hematopoietic stem cell populations and ex vivo expanded endothelial progenitor cells augments neovascularization of tissue after ischemia and contributes to reendothelialization after endothelial injury, thereby, providing a novel therapeutic option. However, controversy exists with respect to the identification and the origin of endothelial progenitor cells. Overall, there is consensus that endothelial progenitor cells can derive from the bone marrow and that CD133/VEGFR2 cells represent a population with endothelial progenitor capacity. However, increasing evidence suggests that there are additional bone marrow-derived cell populations (eg, myeloid cells, "side population" cells, and mesenchymal cells) and non-bone marrow-derived cells, which also can give rise to endothelial cells. The characterization of the different progenitor cell populations and their functional properties are discussed. Mobilization and endothelial progenitor cell-mediated neovascularization is critically regulated. Stimulatory (eg, statins and exercise) or inhibitory factors (risk factors for coronary artery disease) modulate progenitor cell levels and, thereby, affect the vascular repair capacity. Moreover, recruitment and incorporation of endothelial progenitor cells requires a coordinated sequence of multistep adhesive and signaling events including adhesion and migration (eg, by integrins), chemoattraction (eg, by SDF-1/CXCR4), and finally the differentiation to endothelial cells. This review summarizes the mechanisms regulating endothelial progenitor cell-mediated neovascularization and reendothelialization.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                October 2010
                28 November 2009
                : 14
                : 10
                : 2436-2447
                Affiliations
                Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Science Oncology Center and Institute for NanoBio Technology, Johns Hopkins University Baltimore, MD, USA
                Author notes
                *Correspondence to: Sharon GERECHT, Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Science Oncology Center and Institute for NanoBio Technology,Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA. Tel.: 410–516-2846 Fax: 410–516-5510 E-mail: gerecht@ 123456jhu.edu
                Article
                10.1111/j.1582-4934.2009.00981.x
                3823161
                19968735
                d9030ac8-b95e-41bc-b72b-658adb592c81
                © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 24 July 2009
                : 20 November 2009
                Categories
                Articles

                Molecular medicine
                extracellular matrix,endothelial progenitor cells,angiogenesis,vascular endothelial growth factor,tubulogenesis

                Comments

                Comment on this article