43
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Runt DNA binding domain (Runx) defines a metazoan family of sequence-specific transcription factors with essential roles in animal ontogeny and stem cell based development. Depending on cis-regulatory context, Runx proteins mediate either transcriptional activation or repression. In many contexts Runx-mediated repression is carried out by Groucho/TLE, recruited to the transcriptional complex via a C-terminal WRPY sequence motif that is found encoded in all heretofore known Runx genes.

          Findings

          Full-length Runx genes were identified in the recently sequenced genomes of phylogenetically diverse metazoans, including placozoans and sponges, the most basally branching members of that clade. No sequences with significant similarity to the Runt domain were found in the genome of the choanoflagellate Monosiga brevicollis, confirming that Runx is a metazoan apomorphy. A contig assembled from genomic sequences of the haplosclerid demosponge Amphimedon queenslandica was used to construct a model of the single Runx gene from that species, AmqRunx, the veracity of which was confirmed by expressed sequences. The encoded sequence of the Runx protein OscRunx from the homoscleromorph sponge Oscarella carmella was also obtained from assembled ESTs. Remarkably, a syntenic linkage between Runx and Supt3h, previously reported in vertebrates, is conserved in A. queenslandica. Whereas OscRunx encodes a C-terminal Groucho-recruitment motif, AmqRunx does not, although a Groucho homologue is found in the A. queenslandica genome.

          Conclusion

          Our results are consistent with the hypothesis that sponges are paraphyletic, and suggest that Runx-WRPY mediated recruitment of Groucho to cis-regulatory sequences originated in the ancestors of eumetazoans following their divergence from demosponges.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The amphioxus genome and the evolution of the chordate karyotype.

          Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans.

            Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Trichoplax genome and the nature of placozoans.

              As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.
                Bookmark

                Author and article information

                Journal
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2009
                17 April 2009
                : 2
                : 59
                Affiliations
                [1 ]Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA
                [2 ]School of Biological Sciences, University of Queensland, St Lucia, 4072 QLD, Australia
                Article
                1756-0500-2-59
                10.1186/1756-0500-2-59
                2674455
                19374764
                d90c7189-7289-490e-9971-8518aebd0072
                Copyright © 2009 Coffman et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 December 2008
                : 17 April 2009
                Categories
                Short Report

                Medicine
                Medicine

                Comments

                Comment on this article