53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.

          Author Summary

          Influenza, commonly referred to as the flu, is a contagious respiratory illness caused by influenza virus infections. Although most infected subjects with intact immune systems are able to clear the virus without developing serious flu complications, the mechanisms underlying viral control are not fully understood. In this paper, we address this question by developing mathematical models that include both innate and adaptive immune responses, and fitting them to experimental data from horses infected with equine influenza virus. We find that the innate immune response, such as natural killer cell-mediated infected cell killing and interferon's antiviral effect, can explain the first rapid viral decline and subsequent second peak viremia, and that the adaptive immune response is needed to eventually clear the virus. This study improves our understanding of influenza virus dynamics and may provide more information for future research in influenza pathogenesis, treatment, and vaccination.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

          Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells.

            Natural killer (NK) cells destroy virus-infected and tumour cells, apparently without the need for previous antigen stimulation. In part, target cells are recognized by their diminished expression of major histocompatibility complex (MHC) class I molecules, which normally interact with inhibitory receptors on the NK cell surface. NK cells also express triggering receptors that are specific for non-MHC ligands; but the nature of the ligands recognized on target cells is undefined. NKp46 is thought to be the main activating receptor for human NK cells. Here we show that a soluble NKp46-immunoglobulin fusion protein binds to both the haemagglutinin of influenza virus and the haemagglutinin-neuraminidase of parainfluenza virus. In a substantial subset of NK cells, recognition by NKp46 is required to lyse cells expressing the corresponding viral glycoproteins. The binding requires the sialylation of NKp46 oligosaccharides, which is consistent with the known sialic binding capacity of the viral glycoproteins. These findings indicate how NKp46-expressing NK cells may recognize target cells infected by influenza or parainfluenza without the decreased expression of target-cell MHC class I protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1.

              The elimination of viruses and tumors by natural killer cells is mediated by specific natural killer cell receptors. To study the in vivo function of a principal activating natural killer cell receptor, NCR1 (NKp46 in humans), we replaced the gene encoding this receptor (Ncr1) with a green fluorescent protein reporter cassette. There was enhanced spread of certain tumors in 129/Sv but not C57BL/6 Ncr1(gfp/gfp) mice, and influenza virus infection was lethal in both 129/Sv and C57BL/6 Ncr1(gfp/gfp) mice. We noted accumulation of natural killer cells at the site of influenza infection by tracking the green fluorescent protein. Our results demonstrate a critical function for Ncr1 in the in vivo eradication of influenza virus.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                June 2012
                June 2012
                28 June 2012
                : 8
                : 6
                : e1002588
                Affiliations
                [1 ]Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, United States of America
                [2 ]Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
                [3 ]Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
                Emory University, United States of America
                Author notes

                Conceived and designed the experiments: LR. Performed the experiments: KAP LR ASP. Analyzed the data: KAP LR. Contributed reagents/materials/analysis tools: GTH MQ AC ASP. Wrote the paper: KAP LR ASP.

                Article
                PCOMPBIOL-D-11-01903
                10.1371/journal.pcbi.1002588
                3386161
                22761567
                d913af8b-9829-4222-8736-5c83b74660d7
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 19 December 2011
                : 16 May 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Computational Biology
                Population Modeling
                Immunology
                Immune Response
                Microbiology
                Virology
                Viral Transmission and Infection
                Viral Load
                Theoretical Biology
                Mathematics
                Nonlinear Dynamics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article