7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Copolymerization of nonmuscle myosins IIA and IIB followed by their differential turnover in stress fibers leads to self-sorting of IIA and IIB along the front–rear axis of the cell, thus producing a polarized actin cytoskeleton.

          Abstract

          Nonmuscle myosin II (NMII) is uniquely responsible for cell contractility and thus defines multiple aspects of cell behavior. To generate contraction, NMII molecules polymerize into bipolar minifilaments. Different NMII paralogs are often coexpressed in cells and can copolymerize, suggesting that they may cooperate to facilitate cell motility. However, whether such cooperation exists and how it may work remain unknown. We show that copolymerization of NMIIA and NMIIB followed by their differential turnover leads to self-sorting of NMIIA and NMIIB along the front–rear axis, thus producing a polarized actin–NMII cytoskeleton. Stress fibers newly formed near the leading edge are enriched in NMIIA, but over time, they become progressively enriched with NMIIB because of faster NMIIA turnover. In combination with retrograde flow, this process results in posterior accumulation of more stable NMIIB-rich stress fibers, thus strengthening cell polarity. By copolymerizing with NMIIB, NMIIA accelerates the intrinsically slow NMIIB dynamics, thus increasing cell motility and traction and enabling chemotaxis.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Stresses at the cell-to-substrate interface during locomotion of fibroblasts.

          Recent technological improvements in the elastic substrate method make it possible to produce spatially resolved measurements of the tractions exerted by single motile cells. In this study we have applied these developments to produce maps of the tractions exerted by 3T3 fibroblasts during steady locomotion. The resulting images have a spatial resolution of approximately 5 micrometers and a maximum intensity of approximately 10(2) kdyn/cm2 (10(4) pN/micrometers2). We find that the propulsive thrust for fibroblast locomotion, approximately 0.2 dyn, is imparted to the substratum within 15 micrometers of the leading edge. These observations demonstrate that the lamellipodium of the fibroblast is able to generate intense traction stress. The cell body and posterior seem to be mechanically passive structures pulled forward entirely by this action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress fibers are generated by two distinct actin assembly mechanisms in motile cells

            Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)–driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association–dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk.

              Non-muscle myosin II has diverse functions in cell contractility, cytokinesis and locomotion, but the specific contributions of its different isoforms have yet to be clarified. Here, we report that ablation of the myosin IIA isoform results in pronounced defects in cellular contractility, focal adhesions, actin stress fibre organization and tail retraction. Nevertheless, myosin IIA-deficient cells display substantially increased cell migration and exaggerated membrane ruffling, which was dependent on the small G-protein Rac1, its activator Tiam1 and the microtubule moter kinesin Eg5. Myosin IIA deficiency stabilized microtubules, shifting the balance between actomyosin and microtubules with increased microtubules in active membrane ruffles. When microtubule polymerization was suppressed, myosin IIB could partially compensate for the absence of the IIA isoform in cellular contractility, but not in cell migration. We conclude that myosin IIA negatively regulates cell migration and suggest that it maintains a balance between the actomyosin and microtubule systems by regulating microtubule dynamics.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                04 September 2017
                : 216
                : 9
                : 2877-2889
                Affiliations
                [1 ]Department of Biology, University of Pennsylvania, Philadelphia, PA
                [2 ]Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
                [3 ]Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
                Author notes
                Correspondence to Tatyana Svitkina: svitkina@ 123456sas.upenn.edu
                Author information
                http://orcid.org/0000-0002-9790-676X
                Article
                201705167
                10.1083/jcb.201705167
                5584186
                28701425
                d915256d-dc2c-427c-b310-b30cd9940411
                © 2017 Shutova et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 24 May 2017
                : 16 June 2017
                : 20 June 2017
                Funding
                Funded by: National Institutes of Health, DOI http://dx.doi.org/10.13039/100000002;
                Award ID: GM095977
                Award ID: GM110155
                Award ID: HL115553
                Funded by: National Science Foundation, DOI http://dx.doi.org/10.13039/100000001;
                Award ID: CMMI-1548571
                Categories
                Research Articles
                Article
                38
                10
                30

                Cell biology
                Cell biology

                Comments

                Comment on this article