36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Relative Importance of T Cell Subsets in Immunity and Immunopathology of Airborne Mycobacterium tuberculosis Infection in Mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wild-type (WT) and targeted-mutant mice incapable of making αβ T cells, γδ T cells, class I major histocompatibility complex (MHC), class II MHC, interferon (IFN)-γ, or inducible nitric oxide synthase (NOS2), were infected with Mycobacterium tuberculosis (Mtb) by aerosol, and monitored over time for their ability to (a) control infection, (b) develop histopathology at sites of infection, and (c) survive. WT mice acquired the ability to control and to hold infection at a stationary level from day 20 on. This was associated with the development of a macrophage-dominated alveolitis at sites of infection, with increased synthesis of IFN-γ and NOS2 mRNA, and with an median survival time (MST) of 258.5 d. In the absence of αβ T cells, Mtb grew progressively and rapidly to induce a necrotic, neutrophil-dominated lung pathology that killed mice with an MST of 48 d. In the absence of CD4-mediated immunity (class II −/− mice), progressive bacterial growth continued in the lungs and in other organs beyond day 20, resulting in an MST of 77 d. By contrast, in the absence of CD8 T cell–mediated immunity, lung infection was controlled at a 1 log higher stationary level that induced a similar histopathologic response to that of WT mice, and resulted in an MST of 232 d.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Housekeeping genes as internal standards: use and limits.

          Quantitative studies are commonly realised in the biomedical research to compare RNA expression in different experimental or clinical conditions. These quantifications are performed through their comparison to the expression of the housekeeping gene transcripts like glyceraldehyde-3-phosphate dehydrogenase (G3PDH), albumin, actins, tubulins, cyclophilin, hypoxantine phsophoribosyltransferase (HRPT), L32. 28S, and 18S rRNAs are also used as internal standards. In this paper, it is recalled that the commonly used internal standards can quantitatively vary in response to various factors. Possible variations are illustrated using three experimental examples. Preferred types of internal standards are then proposed for each of these samples and thereafter the general procedure concerning the choice of an internal standard and the way to manage its uses are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disseminated tuberculosis in interferon gamma gene-disrupted mice

            The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid- fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of nitric oxide synthase as a protective locus against tuberculosis.

              Mutagenesis of the host immune system has helped identify response pathways necessary to combat tuberculosis. Several such pathways may function as activators of a common protective gene: inducible nitric oxide synthase (NOS2). Here we provide direct evidence for this gene controlling primary Mycobacterium tuberculosis infection using mice homozygous for a disrupted NOS2 allele. NOS2(-/-) mice proved highly susceptible, resembling wild-type littermates immunosuppressed by high-dose glucocorticoids, and allowed Mycobacterium tuberculosis to replicate faster in the lungs than reported for other gene-deficient hosts. Susceptibility appeared to be independent of the only known naturally inherited antimicrobial locus, NRAMP1. Progression of chronic tuberculosis in wild-type mice was accelerated by specifically inhibiting NOS2 via administration of N6-(1-iminoethyl)-L-lysine. Together these findings identify NOS2 as a critical host gene for tuberculostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                5 February 2001
                : 193
                : 3
                : 271-280
                Affiliations
                [a ]The Trudeau Institute, Saranac Lake, New York 12983
                Article
                001848
                10.1084/jem.193.3.271
                2195922
                11157048
                d91591ad-0d91-44cd-88d9-a9abab20c45d
                © 2001 The Rockefeller University Press
                History
                : 3 November 2000
                : 6 December 2000
                : 7 December 2000
                Categories
                Original Article

                Medicine
                interferon γ,cd8,nitric oxide synthase,αβ,cd4
                Medicine
                interferon γ, cd8, nitric oxide synthase, αβ, cd4

                Comments

                Comment on this article