31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Status, causes and controls of cyanobacterial blooms in Lake Erie

      , , , ,
      Journal of Great Lakes Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolution of phosphorus limitation in lakes.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change: a catalyst for global expansion of harmful cyanobacterial blooms.

            Cyanobacteria are the Earth's oldest known oxygen-evolving photosynthetic microorganisms, and they have had major impacts on shaping our current atmosphere and biosphere. Their long evolutionary history has enabled cyanobacteria to develop survival strategies and persist as important primary producers during numerous geochemical and climatic changes that have taken place on Earth during the past 3.5 billion years. Today, some cyanobacterial species form massive surface growths or 'blooms' that produce toxins, cause oxygen depletion and alter food webs, posing a major threat to drinking and irrigation water supplies, fishing and recreational use of surface waters worldwide. These harmful cyanobacteria can take advantage of anthropogenically induced nutrient over-enrichment (eutrophication), and hydrologic modifications (water withdrawal, reservoir construction). Here, we review recent studies revealing that regional and global climatic change may benefit various species of harmful cyanobacteria by increasing their growth rates, dominance, persistence, geographic distributions and activity. Future climatic change scenarios predict rising temperatures, enhanced vertical stratification of aquatic ecosystems, and alterations in seasonal and interannual weather patterns (including droughts, storms, floods); these changes all favour harmful cyanobacterial blooms in eutrophic waters. Therefore, current mitigation and water management strategies, which are largely based on nutrient input and hydrologic controls, must also accommodate the environmental effects of global warming. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment.

              Lake 227, a small lake in the Precambrian Shield at the Experimental Lakes Area (ELA), has been fertilized for 37 years with constant annual inputs of phosphorus and decreasing inputs of nitrogen to test the theory that controlling nitrogen inputs can control eutrophication. For the final 16 years (1990-2005), the lake was fertilized with phosphorus alone. Reducing nitrogen inputs increasingly favored nitrogen-fixing cyanobacteria as a response by the phytoplankton community to extreme seasonal nitrogen limitation. Nitrogen fixation was sufficient to allow biomass to continue to be produced in proportion to phosphorus, and the lake remained highly eutrophic, despite showing indications of extreme nitrogen limitation seasonally. To reduce eutrophication, the focus of management must be on decreasing inputs of phosphorus.
                Bookmark

                Author and article information

                Journal
                Journal of Great Lakes Research
                Journal of Great Lakes Research
                Elsevier BV
                03801330
                June 2014
                June 2014
                : 40
                : 2
                : 215-225
                Article
                10.1016/j.jglr.2013.12.012
                d9189eff-bbf9-4aa1-8627-5464790fff81
                © 2014
                History

                Comments

                Comment on this article