18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegenerative diseases have an increased prevalence and incidence nowadays, mainly due to aging of the population. In addition, current treatments lack efficacy, mostly due to the presence of the blood-brain barrier (BBB) that limits the penetration of the drugs to the central nervous system. Therefore, novel drug delivery systems are required. Polymeric nanoparticles have been reported to be appropriate for this purpose. Specifically, the use of poly-(lactic-co-glycolic acid) (PLGA) seems to be advantageous due to its biocompatibility and biodegradability that ensure safe therapies. In this work, a novel approximation to develop loperamide-loaded nanoparticles is presented: their preparation by nano-emulsion templating using a low-energy method (the phase inversion composition, PIC, method). This nano-emulsification approach is a simple and very versatile technology, which allows a precise size control and it can be performed at mild process conditions. Drug-loaded PLGA nanoparticles were obtained using safe components by solvent evaporation of template nano-emulsions. Characterization of PLGA nanoparticles was performed, together with the study of the BBB crossing. The in vivo results of measuring the analgesic effect using the hot-plate test evidenced that the designed PLGA loperamide-loaded nanoparticles are able to efficiently cross the BBB, with high crossing efficiencies when their surface is functionalized with an active targeting moiety (a monoclonal antibody against the transferrin receptor). These results, together with the nanoparticle characterization performed here are expected to provide sufficient evidences to end up to clinical trials in the near future.

          Related collections

          Author and article information

          Journal
          J Control Release
          Journal of controlled release : official journal of the Controlled Release Society
          Elsevier BV
          1873-4995
          0168-3659
          Aug 10 2015
          : 211
          Affiliations
          [1 ] Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26 Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain. Electronic address: cristina.fornaguera@iqac.csic.es.
          [2 ] Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26 Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
          [3 ] CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Barcelona, Av/ Joan XXIII s/n, 08028 Barcelona, Spain.
          [4 ] Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), University of Barcelona, Av/ Joan XXIII s/n, 08028 Barcelona, Spain.
          Article
          S0168-3659(15)00599-4
          10.1016/j.jconrel.2015.06.002
          26057857
          d91c16fc-8bae-4571-b552-baed00cbf589
          History

          Active targeting,Blood–brain barrier,Loperamide,Nano-emulsions,Polymeric nanoparticles

          Comments

          Comment on this article