18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An error-aware gaze-based keyboard by means of a hybrid BCI system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gaze-based keyboards offer a flexible way for human-computer interaction in both disabled and able-bodied people. Besides their convenience, they still lead to error-prone human-computer interaction. Eye tracking devices may misinterpret user’s gaze resulting in typesetting errors, especially when operated in fast mode. As a potential remedy, we present a novel error detection system that aggregates the decision from two distinct subsystems, each one dealing with disparate data streams. The first subsystem operates on gaze-related measurements and exploits the eye-transition pattern to flag a typo. The second, is a brain-computer interface that utilizes a neural response, known as Error-Related Potentials (ErrPs), which is inherently generated whenever the subject observes an erroneous action. Based on the experimental data gathered from 10 participants under a spontaneous typesetting scenario, we first demonstrate that ErrP-based Brain Computer Interfaces can be indeed useful in the context of gaze-based typesetting, despite the putative contamination of EEG activity from the eye-movement artefact. Then, we show that the performance of this subsystem can be further improved by considering also the error detection from the gaze-related subsystem. Finally, the proposed bimodal error detection system is shown to significantly reduce the typesetting time in a gaze-based keyboard.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recipes for the linear analysis of EEG.

            In this paper, we describe a simple set of "recipes" for the analysis of high spatial density EEG. We focus on a linear integration of multiple channels for extracting individual components without making any spatial or anatomical modeling assumptions, instead requiring particular statistical properties such as maximum difference, maximum power, or statistical independence. We demonstrate how corresponding algorithms, for example, linear discriminant analysis, principal component analysis and independent component analysis, can be used to remove eye-motion artifacts, extract strong evoked responses, and decompose temporally overlapping components. The general approach is shown to be consistent with the underlying physics of EEG, which specifies a linear mixing model of the underlying neural and non-neural current sources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward enhanced P300 speller performance.

              This study examines the effects of expanding the classical P300 feature space on the classification performance of data collected from a P300 speller paradigm [Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol 1988;70:510-23]. Using stepwise linear discriminant analysis (SWLDA) to construct a classifier, the effects of spatial channel selection, channel referencing, data decimation, and maximum number of model features are compared with the intent of establishing a baseline not only for the SWLDA classifier, but for related P300 speller classification methods in general. By supplementing the classical P300 recording locations with posterior locations, online classification performance of P300 speller responses can be significantly improved using SWLDA and the favorable parameters derived from the offline comparative analysis.
                Bookmark

                Author and article information

                Contributors
                kalaganis@csd.auth.gr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 September 2018
                4 September 2018
                2018
                : 8
                : 13176
                Affiliations
                [1 ]ISNI 0000000109457005, GRID grid.4793.9, Aristotle University of Thessaloniki, Department of Informatics, AIIA lab, ; Thessaloniki, 54124 Greece
                [2 ]GRID grid.435101.2, Centre for Research and Technology Hellas, , Information Technologies Institute, MKlab, ; Thessaloniki, 57001 Greece
                [3 ]ISNI 0000000109457005, GRID grid.4793.9, Aristotle University of Thessaloniki, Neuroinformatics Group, ; Thessaloniki, 54124 Greece
                Article
                31425
                10.1038/s41598-018-31425-2
                6123473
                30181532
                d91ff879-7b6d-44d3-aeab-935f85b87cf6
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 March 2018
                : 2 August 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100007601, EC | Horizon 2020 (European Union Framework Programme for Research and Innovation);
                Award ID: 644780
                Award ID: 644780
                Award ID: 644780
                Award ID: 644780
                Award ID: 644780
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article