6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Distribution and Variation of Bacterial Endosymbiont and “Candidatus Liberibacter asiaticus” Titer in the Huanglongbing Insect Vector, Diaphorina citri Kuwayama

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Current epidemiological understanding of citrus Huanglongbing .

          Huanglongbing (HLB) is the most destructive citrus pathosystem worldwide. Previously known primarily from Asia and Africa, it was introduced into the Western Hemisphere in 2004. All infected commercial citrus industries continue to decline owing to inadequate current control methods. HLB increase and regional spatial spread, related to vector populations, are rapid compared with other arboreal pathosystems. Disease dynamics result from multiple simultaneous spatial processes, suggesting that psyllid vector transmission is a continuum from local area to very long distance. Evolutionarily, HLB appears to have originated as an insect endosymbiont that has moved into plants. Lack of exposure of citrus to the pathogen prior to approximately 100 years ago did not provide sufficient time for development of resistance. A prolonged incubation period and regional dispersal make eradication nonviable. Multiple asymptomatic infections per symptomatic tree, incomplete systemic distribution within trees, and prolonged incubation period make detection difficult and greatly complicate disease control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae.

            Malaria parasite transmission depends on the successful transition of Plasmodium through discrete developmental stages in the lumen of the mosquito midgut. Like the human intestinal tract, the mosquito midgut contains a diverse microbial flora, which may compromise the ability of Plasmodium to establish infection. We have identified an Enterobacter bacterium isolated from wild mosquito populations in Zambia that renders the mosquito resistant to infection with the human malaria parasite Plasmodium falciparum by interfering with parasite development before invasion of the midgut epithelium. Phenotypic analyses showed that the anti-Plasmodium mechanism requires small populations of replicating bacteria and is mediated through a mosquito-independent interaction with the malaria parasite. We show that this anti-Plasmodium effect is largely caused by bacterial generation of reactive oxygen species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 160-kilobase genome of the bacterial endosymbiont Carsonella.

              Previous studies have suggested that the minimal cellular genome could be as small as 400 kilobases. Here, we report the complete genome sequence of the psyllid symbiont Carsonella ruddii, which consists of a circular chromosome of 159,662 base pairs, averaging 16.5% GC content. It is by far the smallest and most AT-rich bacterial genome yet characterized. The genome has a high coding density (97%) with many overlapping genes and reduced gene length. Genes for translation and amino acid biosynthesis are relatively well represented, but numerous genes considered essential for life are missing, suggesting that Carsonella may have achieved organelle-like status.
                Bookmark

                Author and article information

                Journal
                Microbial Ecology
                Microb Ecol
                Springer Science and Business Media LLC
                0095-3628
                1432-184X
                July 2019
                November 24 2018
                July 2019
                : 78
                : 1
                : 206-222
                Article
                10.1007/s00248-018-1290-1
                30474731
                d923d7f4-ea46-43f3-a737-9473c31b9a57
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article