+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Increased Serum IL-10 and Endothelin Levels in Hemolytic Uremic Syndrome Caused by Escherichia coli O157

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Shiga toxin, produced by Escherichia coli O157:H7, is important for the pathogenicity of the epidemic form of hemolytic uremic syndrome (HUS). This toxin has recently been found to stimulate endothelin-1 synthesis in cultured endothelial cells in vitro. Methods: We investigated endothelin and cytokine levels in sera during a large outbreak of E. coli O157:H7 infection in Osaka, Japan, in 1996. Eleven patients with HUS and 9 patients with hemorrhagic colitis at the onset of E. coli O157:H7 infection were studied. Results: Serum IL-6 (p < 0.01), IL-8 (p < 0.05), IL-10 (p < 0.001) and endothelin (p < 0.001) levels were significantly increased in patients with HUS compared to those with colitis only. The serum thrombomodulin level, a molecular marker of endothelial damage, also showed a significant positive correlation with serum IL-6 (p < 0.01), IL-8 (p < 0.01), IL-10 (p < 0.01) and endothelin (p < 0.001) levels. In a HUS patient, the increase in serum IL-10 and endothelin levels reached a plateau prior to the peak of serum creatinine levels. Conclusion: Increased serum endothelin synthesis by Shiga toxin in vivo was proven in HUS secondary to E. coli O157:H7 infection. Increased serum endothelin and IL-10 levels were speculated to be associated with the development of HUS through vascular endothelial damage caused by E. coli O157:H7 infection.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones

          A cytokine synthesis inhibitory factor (CSIF) is secreted by Th2 clones in response to Con A or antigen stimulation, but is absent in supernatants from Con A-induced Th1 clones. CSIF can inhibit the production of IL-2, IL-3, lymphotoxin (LT)/TNF, IFN-gamma, and granulocyte-macrophage CSF (GM-CSF) by Th1 cells responding to antigen and APC, but Th2 cytokine synthesis is not significantly affected. Transforming growth factor beta (TGF-beta) also inhibits IFN-gamma production, although less effectively than CSIF, whereas IL-2 and IL-4 partially antagonize the activity of CSIF. CSIF inhibition of cytokine synthesis is not complete, since early cytokine synthesis (before 8 h) is not significantly affected, whereas later synthesis is strongly inhibited. In the presence of CSIF, IFN-gamma mRNA levels are reduced slightly at 8, and strongly at 12 h after stimulation. Inhibition of cytokine expression by CSIF is not due to a general reduction in Th1 cell viability, since actin mRNA levels were not reduced, and proliferation of antigen-stimulated cells in response to IL-2, was unaffected. Biochemical characterization, mAbs, and recombinant or purified cytokines showed that CSIF is distinct from IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IFN-gamma, GM-CSF, TGF-beta, TNF, LT, and P40. The potential role of CSIF in crossregulation of Th1 and Th2 responses is discussed.
            • Record: found
            • Abstract: found
            • Article: not found

            Biological properties of interleukin 10.

            An enormous amount of information on interleukin 10 (IL-10) has been gathered since its original description as cytokine synthesis inhibition factor (CSIF) several years ago. In this short article, Maureen Howard and Anne O'Garra summarize what is currently known of the biological properties of IL-10 and speculate on its clinical potential.
              • Record: found
              • Abstract: not found
              • Article: not found

              Genetic influence on cytokine production and fatal meningococcal disease


                Author and article information

                S. Karger AG
                April 2000
                30 March 2000
                : 84
                : 4
                : 326-332
                aDepartment of Pediatrics, Faculty of Medicine, Osaka University; bDepartment of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University; cDepartment of Pediatrics, Osaka Medical Center and Research Institute for Maternal and Child Health, and dDepartment of Pediatrics, Minoh City Hospital, Minoh City, Osaka, Japan
                45607 Nephron 2000;84:326–332
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 3, References: 35, Pages: 7
                Self URI (application/pdf):
                Original Paper


                Comment on this article