12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microbial community structure, co‐occurrence network and fermentation characteristics of woody plant silage

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          KEGG: kyoto encyclopedia of genes and genomes.

          M Kanehisa (2000)
          KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

            Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beyond the Venn diagram: the hunt for a core microbiome.

              Discovering a core microbiome is important for understanding the stable, consistent components across complex microbial assemblages. A core is typically defined as the suite of members shared among microbial consortia from similar habitats, and is represented by the overlapping areas of circles in Venn diagrams, in which each circle contains the membership of the sample or habitats being compared. Ecological insight into core microbiomes can be enriched by 'omics approaches that assess gene expression, thereby extending the concept of the core beyond taxonomically defined membership to community function and behaviour. Parameters defined by traditional ecology theory, such as composition, phylogeny, persistence and connectivity, will also create a more complex portrait of the core microbiome and advance understanding of the role of key microorganisms and functions within and across ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of the Science of Food and Agriculture
                J Sci Food Agric
                Wiley
                0022-5142
                1097-0010
                February 2022
                August 16 2021
                February 2022
                : 102
                : 3
                : 1193-1204
                Affiliations
                [1 ]College of Grassland Science and Technology China Agricultural University Beijing China
                [2 ]Crop, Livestock and Environment Division Japan International Research Center for Agricultural Sciences (JIRCAS) Tsukuba Japan
                [3 ]Science Department Beijing Sure Academy of Biosciences Beijing China
                [4 ]Engineering Research Center of Development and Utilization of Microbial Resources in Silage Inner Mongolia Academy of Agricultural Sciences & Animal Husbandry Hohhot China
                Article
                10.1002/jsfa.11457
                34343355
                d93b5ef7-18ef-411c-8c20-654922ef19ef
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article