9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic exploitation of IPSE, a urogenital parasite-derived host modulatory protein, for chemotherapy-induced hemorrhagic cystitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotherapy-induced hemorrhagic cystitis (CHC) can be difficult to manage. Prior work suggests that IL-4 alleviates ifosfamide-induced hemorrhagic cystitis (IHC), but systemically administered IL-4 causes significant side effects. We hypothesized that the Schistosoma hematobium homolog of IL-4-inducing principle from Schistosoma mansoni eggs (H-IPSE), would reduce IHC and associated bladder pathology. IPSE binds IgE on basophils and mast cells, triggering IL-4 secretion by these cells. IPSE is also an “infiltrin,” translocating into the host nucleus to modulate gene transcription. Mice were administered IL-4, H-IPSE protein or its nuclear localization sequence (NLS) mutant, with or without neutralizing anti-IL-4 antibody, or 2-mercaptoethane sulfonate sodium (MESNA; a drug used to prevent IHC), followed by ifosfamide. Bladder tissue damage and hemoglobin content were measured. Spontaneous and evoked pain, urinary frequency, and bladdergene expression analysis were assessed. Pain behaviors were interpreted in a blinded fashion. One dose of H-IPSE was superior to MESNA and IL-4 in suppressing bladder hemorrhage in an IL-4-dependent fashion and comparable with MESNA in dampening ifosfamide-triggered pain behaviors in an NLS-dependent manner. H-IPSE also accelerated urothelial repair following IHC. Our work represents the first therapeutic exploitation of a uropathogen-derived host modulatory molecule in a clinically relevant bladder disease model and indicates that IPSE may be an alternative to MESNA for mitigating CHC.—Mbanefo, E. C., Le, L., Pennington, L. F., Odegaard, J. I., Jardetzky, T. S., Alouffi, A., Falcone, F. H., Hsieh, M. H. Therapeutic exploitation of IPSE, a urogenital parasite-derived host modulatory protein, for chemotherapy-induced hemorrhagic cystitis.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression.

          There is growing evidence that tumor-associated macrophages (TAMs) promote tumor growth and dissemination. Many individual reports have focused on the protumor function of molecules linked to the recruitment of macrophages, but little is known about which factor has the strongest impact on recruitment of macrophages in breast cancer. To elucidate this question, we performed RT-PCR using species-specific primers and evaluated tumoral and stromal mRNA expression of macrophage chemoattractants separately in human breast tumor xenografts. The correlation between the tumoral or stromal chemoattractant mRNA expression including monocyte chemoattractant protein-1 (MCP-1) (CCL2), MIP-1alpha (CCL3), RANTES (CCL5), colony-stimulating factor 1, tumor necrosis factor alpha, platelet-derived growth factor (PDGF)-BB and macrophage infiltration were compared. There was significant positive correlation between stromal MCP-1 expression and macrophage number (r = 0.63), and negative correlation between tumoral RANTES expression and macrophage number (r = -0.75). However, no significant correlation was found for the other tumoral and stromal factors. The interaction between the tumor cells and macrophages was also investigated. Tumor cell-macrophage interactions augmented macrophage-derived MCP-1 mRNA expression and macrophage chemotactic activity in vitro. Treatment of immunodeficient mice bearing human breast cancer cells with a neutralizing antibody to MCP-1 resulted in significant decrease of macrophage infiltration, angiogenetic activity and tumor growth. Furthermore, immunohistochemical analysis of human breast cancer tissue showed stromal MCP-1 had a significant correlation with relapse free survival (p = 0.029), but tumoral MCP-1 did not (p = 0.105). These findings indicate that stromal MCP-1 produced as a result of tumor-stromal interactions may be important for the progression of human breast cancer and macrophages may play an important role in this tumor-stroma interaction. 2009 UICC
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation.

            Cyclophosphamide (CP) and ifosfamide (IF) are widely used antineoplastic agents, but their side-effect of hemorrhagic cystitis (HC) is still encountered as an important problem. Acrolein is the main molecule responsible of this side-effect and mesna (2-mercaptoethane sulfonate) is the commonly used preventive agent. Mesna binds acrolein and prevent its direct contact with uroepithelium. Current knowledge provides information about the pathophysiological mechanism of HC: several transcription factors and cytokines, free radicals and non-radical reactive molecules, as well as poly(adenosine diphosphate-ribose) polymerase (PARP) activation are now known to take part in its pathogenesis. There is no doubt that HC is an inflammatory process, including when caused by CP. Thus, many cytokines such as tumor necrosis factor (TNF) and the interleukin (IL) family and transcription factors such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) also play a role in its pathogenesis. When these molecular factors are taken into account, pathogenesis of CP-induced bladder toxicity can be summarized in three steps: (1) acrolein rapidly enters into the uroepithelial cells; (2) it then activates intracellular reactive oxygen species and nitric oxide production (directly or through NF-kappaB and AP-1) leading to peroxynitrite production; (3) finally, the increased peroxynitrite level damages lipids (lipid peroxidation), proteins (protein oxidation) and DNA (strand breaks) leading to activation of PARP, a DNA repair enzyme. DNA damage causes PARP overactivation, resulting in the depletion of oxidized nicotinamide-adenine dinucleotide and adenosine triphosphate, and consequently in necrotic cell death. For more effective prevention against HC, all pathophysiological mechanisms must be taken into consideration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity

              The coevolution of humans and infectious agents has exerted selective pressure on the immune system to control potentially lethal infections. Correspondingly, pathogens have evolved with various strategies to modulate and circumvent the host's innate and adaptive immune response. Schistosoma species are helminth parasites with genes that have been selected to modulate the host to tolerate chronic worm infections, often for decades, without overt morbidity. The modulation of immunity by schistosomes has been shown to prevent a range of immune-mediated diseases, including allergies and autoimmunity. Individual immune-modulating schistosome molecules have, therefore, therapeutic potential as selective manipulators of the immune system to prevent unrelated diseases. Here we show that S. mansoni eggs secrete a protein into host tissues that binds certain chemokines and inhibits their interaction with host chemokine receptors and their biological activity. The purified recombinant S. mansoni chemokine binding protein (smCKBP) suppressed inflammation in several disease models. smCKBP is unrelated to host proteins and is the first described chemokine binding protein encoded by a pathogenic human parasite and may have potential as an antiinflammatory agent.
                Bookmark

                Author and article information

                Journal
                FASEB J
                FASEB J
                fasebj
                fasebj
                The FASEB Journal
                Federation of American Societies for Experimental Biology (Bethesda, MD, USA )
                0892-6638
                1530-6860
                August 2018
                03 April 2018
                03 April 2018
                : 32
                : 8
                : 4408-4419
                Affiliations
                [* ]Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA;
                []Division of Urology, Children’s National Medical Center, Washington, District of Columbia, USA;
                []Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA;
                [§ ]OneOme, Redwood City, California, USA;
                []Life Science and Environment Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia;
                []Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom;
                [# ]Department of Urology, The George Washington University, Washington, District of Columbia, USA
                Author notes
                [1 ]Correspondence: Biomedical Research Institute, 9410 Key West Ave., Rockville, MD 20850, USA. E-mail: mhsieh@ 123456afbr-bri.org
                Article
                FJ_201701415R
                10.1096/fj.201701415R
                6044057
                29613835
                d942666b-f11d-4d50-9f8c-391f213b28cf
                © The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) ( http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2017
                : 26 February 2018
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 76, Pages: 12
                Categories
                Research
                Custom metadata
                v1

                Molecular biology
                infiltrin,anti-inflammatory,ifosfamide,urothelial,schistosoma
                Molecular biology
                infiltrin, anti-inflammatory, ifosfamide, urothelial, schistosoma

                Comments

                Comment on this article