3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS; 400 μg/ml), UV-irradiated virus (CIV UV; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV, CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions permitting early viral expression, and (iii) requires the JNK signaling pathway. This is the first report of JNK signal requirement during apoptosis induction by an insect virus.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis.

          The c-Jun NH(2)-terminal kinase (JNK) is activated when cells are exposed to environmental stress, including UV radiation. Gene disruption studies demonstrate that JNK is essential for UV-stimulated apoptosis mediated by the mitochondrial pathway by a Bax/Bak-dependent mechanism. Here, we demonstrate that JNK phosphorylates two members of the BH3-only subgroup of Bcl2-related proteins (Bim and Bmf) that are normally sequestered by binding to dynein and myosin V motor complexes. Phosphorylation by JNK causes release from the motor complexes. These proapoptotic BH3-only proteins therefore provide a molecular link between the JNK signal transduction pathway and the Bax/Bak-dependent mitochondrial apoptotic machinery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary genomics of nucleo-cytoplasmic large DNA viruses.

            A previous comparative-genomic study of large nuclear and cytoplasmic DNA viruses (NCLDVs) of eukaryotes revealed the monophyletic origin of four viral families: poxviruses, asfarviruses, iridoviruses, and phycodnaviruses [Iyer, L.M., Aravind, L., Koonin, E.V., 2001. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75 (23), 11720-11734]. Here we update this analysis by including the recently sequenced giant genome of the mimiviruses and several additional genomes of iridoviruses, phycodnaviruses, and poxviruses. The parsimonious reconstruction of the gene complement of the ancestral NCLDV shows that it was a complex virus with at least 41 genes that encoded the replication machinery, up to four RNA polymerase subunits, at least three transcription factors, capping and polyadenylation enzymes, the DNA packaging apparatus, and structural components of an icosahedral capsid and the viral membrane. The phylogeny of the NCLDVs is reconstructed by cladistic analysis of the viral gene complements, and it is shown that the two principal lineages of NCLDVs are comprised of poxviruses grouped with asfarviruses and iridoviruses grouped with phycodnaviruses-mimiviruses. The phycodna-mimivirus grouping was strongly supported by several derived shared characters, which seemed to rule out the previously suggested basal position of the mimivirus [Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La Scola, B., Suzan, M., Claverie, J.M. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306 (5700), 1344-1350]. These results indicate that the divergence of the major NCLDV families occurred at an early stage of evolution, prior to the divergence of the major eukaryotic lineages. It is shown that subsequent evolution of the NCLDV genomes involved lineage-specific expansion of paralogous gene families and acquisition of numerous genes via horizontal gene transfer from the eukaryotic hosts, other viruses, and bacteria (primarily, endosymbionts and parasites). Amongst the expansions, there are multiple families of predicted virus-specific signaling and regulatory domains. Most NCLDVs have also acquired large arrays of genes related to ubiquitin signaling, and the animal viruses in particular have independently evolved several defenses against apoptosis and immune response, including growth factors and potential inhibitors of cytokine signaling. The mimivirus displays an enormous array of genes of bacterial provenance, including a representative of a new class of predicted papain-like peptidases. It is further demonstrated that a significant number of genes found in NCLDVs also have homologs in bacteriophages, although a vertical relationship between the NCLDVs and a particular bacteriophage group could not be established. On the basis of these observations, two alternative scenarios for the origin of the NCLDVs and other groups of large DNA viruses of eukaryotes are considered. One of these scenarios posits an early assembly of an already large DNA virus precursor from which various large DNA viruses diverged through an ongoing process of displacement of the original genes by xenologous or non-orthologous genes from various sources. The second scenario posits convergent emergence, on multiple occasions, of large DNA viruses from small plasmid-like precursors through independent accretion of similar sets of genes due to strong selective pressures imposed by their life cycles and hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway.

              Drosophila provides a powerful genetic model for studying the in vivo regulation of cell death. In our large-scale gain-of-function screen, we identified Eiger, the first invertebrate tumor necrosis factor (TNF) superfamily ligand that can induce cell death. Eiger is a type II transmembrane protein with a C-terminal TNF homology domain. It is predominantly expressed in the nervous system. Genetic evidence shows that Eiger induces cell death by activating the Drosophila JNK pathway. Although this cell death process is blocked by Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), it does not require caspase activity. We also show genetically that Eiger is a physiological ligand for the Drosophila JNK pathway. Our findings demonstrate that Eiger can initiate cell death through an IAP-sensitive cell death pathway via JNK signaling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virology
                Virology
                Virology
                Academic Press
                0042-6822
                1096-0341
                18 October 2007
                20 January 2008
                18 October 2007
                : 370
                : 2
                : 333-342
                Affiliations
                [a ]Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
                [b ]The Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409-3131, USA
                Author notes
                [* ]Corresponding author. Department of Biological Sciences, Box 43131, Texas Tech University, Lubbock, TX 79409-3131, USA. Fax: +1 806 742 2963. shan.bilimoria@ 123456ttu.edu
                [1]

                Abramson Cancer Center and Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.

                [2]

                Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.

                [3]

                School of Allied Health Sciences, Southwestern Oklahoma State University, Weatherford, OK 73096, USA.

                Article
                S0042-6822(07)00602-2
                10.1016/j.virol.2007.09.010
                7103334
                17942133
                d948528f-a3e2-4859-a447-972ebfb67e0c
                Copyright © 2007 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 20 June 2007
                : 4 September 2007
                : 10 September 2007
                Categories
                Article

                Microbiology & Virology
                chilo iridescent virus,iridovirus,apoptosis,inhibition,endocytosis,viral early expression,jnk,apical caspase,insect,lepidopteran cells

                Comments

                Comment on this article