10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Angiotensin II Activation of mTOR Results in Tubulointerstitial Fibrosis through Loss of N-Cadherin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Angiotensin (Ang) II contributes to tubulointerstitial fibrosis. Recent data highlight mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling in tubulointerstitial fibrosis; however, the mechanisms remain unclear. Thereby, we investigated the role of Ang II on mTOR/S6K1-dependent proximal tubule (PT) injury, remodeling, and fibrosis. Methods: We utilized young transgenic Ren2 rats (R2-T) and Sprague-Dawley rats (SD-T) treated with the Ang type 1 receptor (AT<sub>1</sub>R) blocker telmisartan (2 mg · kg<sup>–1</sup> · day<sup>–1</sup>) or vehicle (R2-C; SD-C) for 3 weeks to examine PT structure and function. Results: Ren2 rats displayed increased systolic blood pressure, proteinuria and increased PT oxidant stress and remodeling. There were parallel increases in kidney injury molecule-1 and reductions in neprilysin and megalin with associated ultrastructural findings of decreased clathrin-coated pits, endosomes, and vacuoles. Ren2 rats displayed increased Serine<sup>2448</sup> phosphorylation of mTOR and downstream S6K1, in concert with ultrastructural basement membrane thickening, tubulointerstitial fibrosis and loss of the adhesion molecule N-cadherin. Telmisartan treatment attenuated proteinuria as well as the biochemical and tubulointerstitial structural abnormalities seen in the Ren2 rats. Conclusions: Our observations suggest that Ang II activation of the AT<sub>1</sub>R contributes to PT brush border injury and remodeling, in part, due to enhanced mTOR/S6K1 signaling which promotes tubulointerstitial fibrosis through loss of N-cadherin.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells.

          Following injury, the clearance of apoptotic and necrotic cells is necessary for mitigation and resolution of inflammation and tissue repair. In addition to macrophages, which are traditionally assigned to this task, neighboring epithelial cells in the affected tissue are postulated to contribute to this process. Kidney injury molecule-1 (KIM-1 or TIM-1) is an immunoglobulin superfamily cell-surface protein not expressed by cells of the myeloid lineage but highly upregulated on the surface of injured kidney epithelial cells. Here we demonstrate that injured kidney epithelial cells assumed attributes of endogenous phagocytes. Confocal images confirm internalization of apoptotic bodies within KIM-1-expressing epithelial cells after injury in rat kidney tubules in vivo. KIM-1 was directly responsible for phagocytosis in cultured primary rat tubule epithelial cells and also porcine and canine epithelial cell lines. KIM-1 was able to specifically recognize apoptotic cell surface-specific epitopes phosphatidylserine, and oxidized lipoproteins, expressed by apoptotic tubular epithelial cells. Thus, KIM-1 is the first nonmyeloid phosphatidylserine receptor identified to our knowledge that transforms epithelial cells into semiprofessional phagocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation.

            Epithelial-mesenchymal transformation (EMT) plays an important role in embryonic development and tumorigenesis and has been described in organ remodeling during fibrogenesis. In the kidney, EMT can be induced efficiently in cultured proximal tubular epithelium by coincubation of transforming growth factor (TGF)-beta1 and epidermal growth factor (EGF). Recently, we also have observed overexpression of basic fibroblast growth factor-2 (FGF-2) protein and mRNA in human kidneys with marked interstitial fibrosis. The aims of the present study were to compare the effects of FGF-2 as a facilitator of EMT in tubular epithelial cells with EGF and TGF-beta1. We analyzed the morphogenic effects of the three cytokines on four different aspects of EMT: cell motility, expression and regulation of cellular markers, synthesis and secretion of extracellular matrix (ECM) proteins as well as matrix degradation. Cell motility was studied by a migration assay and cell differentiation markers were analyzed by immunofluorescence and immunoblots. In addition, regulation of the epithelial adhesion molecule E-cadherin and fibroblast-specific protein 1 (FSP1) were analyzed by luciferase reporter constructs and stable transfections. ELISAs for collagen types I and IV and fibronectin were used for ECM synthesis, and zymograms were utilized for analysis of matrix degradation. FGF-2 induced cell motility across a tubular basement membrane in two tubular cell lines. All three cytokines induced the expression of vimentin and FSP1, but only FGF-2 and TGF-beta1 reduced cytokeratin expression by immunofluorescence. These effects were most demonstrable in the distal tubular epithelial cell line and were confirmed by immunoblot analyses. Expression of E-cadherin was reduced by 61.5 +/- 3.3% and expression of cytokeratin by 91 +/- 0.5% by TGF-beta1 plus FGF-2. Conversely, the mesenchymal markers alpha-smooth muscle actin (SMA) and FSP1 were induced with FGF-2 by 2.2 +/- 0.1-fold and 6.8 +/- 0.9-fold, respectively. Interestingly, de novo expression of the mesenchymal marker OB-cadherin was induced only by FGF-2 and EGF but not by TGF-beta1. All three cytokines stimulated FSP1 and decreased E-cadherin promoter activity. FGF-2 also induced intracellular fibronectin synthesis but not secretion, the latter of which was stimulated exclusively by TGF-beta1. Finally, zymographic analyses demonstrated that FGF-2 induced MMP-2 activity by 2.6 +/- 0.5-fold and MMP-9 activity by 2.4 +/- 0.1-fold, providing a mechanism for basement membrane disintegration and migratory access of transforming epithelium to the interstitium. FGF-2 makes an important contribution to the mechanisms of EMT by stimulating microenvironmental proteases essential for disaggregation of organ-based epithelial units. Furthermore, the expression of epithelial and mesenchymal marker proteins seems to be affected at the promoter level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the mammalian target of rapamycin (mTOR) in renal disease.

              The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in mediating cell size and mass, proliferation, and survival. mTOR has also emerged as an important modulator of several forms of renal disease. mTOR is activated after acute kidney injury and contributes to renal regeneration and repair. Inhibition of mTOR with rapamycin delays recovery of renal function after acute kidney injury. Activation of mTOR within the kidney also occurs in animal models of diabetic nephropathy and other causes of progressive kidney disease. Rapamycin ameliorates several key mechanisms believed to mediate changes associated with the progressive loss of GFR in chronic kidney disease. These include glomerular hypertrophy, intrarenal inflammation, and interstitial fibrosis. mTOR also plays an important role in mediating cyst formation and enlargement in autosomal dominant polycystic kidney disease. Inhibition of mTOR by rapamycin or one of its analogues represents a potentially novel treatment for autosomal dominant polycystic kidney disease. Finally, inhibitors of mTOR improve survival in patients with metastatic renal cell carcinoma.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2011
                August 2011
                29 June 2011
                : 34
                : 2
                : 115-125
                Affiliations
                aHarry S. Truman VA Medical Center, and the University of Missouri-Columbia School of Medicine, Departments of bInternal Medicine, cMedical Pharmacology and Physiology, dNutrition and Exercise Physiology, Divisions of eNephrology and fEndocrinology, and the gDiabetes Cardiovascular Center, Columbia, Mo., and hHypertension and Vascular Disease Unit, Wake Forest University, Winston-Salem, N.C., USA
                Author notes
                *Adam Whaley-Connell, DO, MSPH, Harry S. Truman VA Medical Center, 800 Hospital Dr, Columbia, MO 65211 (USA), Tel. +1 573 814 6000, ext. 53729, E-Mail whaleyconnella@health.missouri.edu
                Article
                329327 PMC3130895 Am J Nephrol 2011;34:115–125
                10.1159/000329327
                PMC3130895
                21720156
                d9494f48-40ee-4329-afa0-1da419f6de04
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 31 March 2011
                : 10 May 2011
                Page count
                Figures: 5, Pages: 11
                Categories
                Original Report: Laboratory Investigation

                Cardiovascular Medicine,Nephrology
                Tubulointerstitial fibrosis,mTOR,Angiotensin II,Proximal tubule,N-Cadherin

                Comments

                Comment on this article