9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis

      research-article
      1 , , 2 , 2
      Genetics, Selection, Evolution : GSE
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Population stratification and cryptic relationships have been the main sources of excessive false-positives and false-negatives in population-based association studies. Many methods have been developed to model these confounding factors and minimize their impact on the results of genome-wide association studies. In most of these methods, a two-stage approach is applied where: (1) methods are used to determine if there is a population structure in the sample dataset and (2) the effects of population structure are corrected either by modeling it or by running a separate analysis within each sub-population. The objective of this study was to evaluate the impact of population structure on the accuracy and power of genome-wide association studies using a Bayesian multiple regression method.

          Methods

          We conducted a genome-wide association study in a stochastically simulated admixed population. The genome was composed of six chromosomes, each with 1000 markers. Fifteen segregating quantitative trait loci contributed to the genetic variation of a quantitative trait with heritability of 0.30. The impact of genetic relationships and breed composition (BC) on three analysis methods were evaluated: single marker simple regression (SMR), single marker mixed linear model (MLM) and Bayesian multiple-regression analysis (BMR). Each method was fitted with and without BC. Accuracy, power, false-positive rate and the positive predictive value of each method were calculated and used for comparison.

          Results

          SMR and BMR, both without BC, were ranked as the worst and the best performing approaches, respectively. Our results showed that, while explicit modeling of genetic relationships and BC is essential for models SMR and MLM, BMR can disregard them and yet result in a higher power without compromising its false-positive rate.

          Conclusions

          This study showed that the Bayesian multiple-regression analysis is robust to population structure and to relationships among study subjects and performs better than a single marker mixed linear model approach.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Association mapping in structured populations.

          The use, in association studies, of the forthcoming dense genomewide collection of single-nucleotide polymorphisms (SNPs) has been heralded as a potential breakthrough in the study of the genetic basis of common complex disorders. A serious problem with association mapping is that population structure can lead to spurious associations between a candidate marker and a phenotype. One common solution has been to abandon case-control studies in favor of family-based tests of association, such as the transmission/disequilibrium test (TDT), but this comes at a considerable cost in the need to collect DNA from close relatives of affected individuals. In this article we describe a novel, statistically valid, method for case-control association studies in structured populations. Our method uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations. It provides power comparable with the TDT in many settings and may substantially outperform it if there are conflicting associations in different subpopulations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An efficient multi-locus mixed model approach for genome-wide association studies in structured populations

            Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to statistical confounding in genome-wide association studies. Mixed models have been shown to handle the confounding effects of a diffuse background of large numbers of loci of small effect well, but do not always account for loci of larger effect. Here we propose a multi-locus mixed model as a general method for mapping complex traits in structured populations. Simulations suggest that our method outperforms existing methods, in terms of power as well as false discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying novel associations in known candidates as well as evidence for allelic heterogeneity. We also demonstrate how a priori knowledge from an A. thaliana linkage mapping study can be integrated into our method using a Bayesian approach. Our implementation is computationally efficient, making the analysis of large datasets (n > 10000) practicable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping genes for complex traits in domestic animals and their use in breeding programmes.

              Genome-wide panels of SNPs have recently been used in domestic animal species to map and identify genes for many traits and to select genetically desirable livestock. This has led to the discovery of the causal genes and mutations for several single-gene traits but not for complex traits. However, the genetic merit of animals can still be estimated by genomic selection, which uses genome-wide SNP panels as markers and statistical methods that capture the effects of large numbers of SNPs simultaneously. This approach is expected to double the rate of genetic improvement per year in many livestock systems.
                Bookmark

                Author and article information

                Contributors
                ali.toosi@cobb-vantress.com
                rohan@iastate.edu
                jdekkers@iastate.edu
                Journal
                Genet Sel Evol
                Genet. Sel. Evol
                Genetics, Selection, Evolution : GSE
                BioMed Central (London )
                0999-193X
                1297-9686
                19 June 2018
                19 June 2018
                2018
                : 50
                : 32
                Affiliations
                [1 ]Cobb-Vantress Inc., 4703 US HWY 412 E, Siloam Springs, AR 72761 USA
                [2 ]ISNI 0000 0004 1936 7312, GRID grid.34421.30, Department of Animal Science, , Iowa State University, ; Ames, IA 50010 USA
                Author information
                http://orcid.org/0000-0002-0586-4903
                Article
                402
                10.1186/s12711-018-0402-1
                6006859
                29914353
                d9580012-bc3b-439e-b724-476690db6833
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 10 October 2017
                : 1 June 2018
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Genetics
                Genetics

                Comments

                Comment on this article