12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      dGTP Starvation in Escherichia coli Provides New Insights into the Thymineless-Death Phenomenon

      research-article
      , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death.

          Author Summary

          Starvation of cells for DNA precursor dTTP is strikingly lethal in many organisms, like bacteria, yeast, and human cells. This type of death is unusual in that starvation for other nutritional requirements generally results in growth arrest, but not in death. The phenomenon is called thymineless death (TLD), because it was first observed some 60 years ago when a thymine-requiring ( thyA) E. coli strain was exposed to growth medium lacking thymine. The TLD phenomenon is of significant interest as it is the basis for several chemotherapeutic (anticancer) treatments in which rapidly growing cells are selectively killed by depletion of the cellular dTTP pool. The precise mechanisms by which cells succumb to dTTP depletion are of significant interest, but have remained elusive for a long time. In the present work, we demonstrate for the first time that the effect is not specific for dTTP starvation. We show that an E. coli strain starved for the DNA precursor dGTP dies in a manner similar to dTTP-starved cells. The effect, which we have termed dGTP starvation, might be exploited - like TLD - therapeutically.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Acetylornithinase of Escherichia coli: partial purification and some properties.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Timing of initiation of chromosome replication in individual Escherichia coli cells.

            The synchrony of initiation of chromosome replication at multiple origins within individual Escherichia coli cells was studied by a novel method. Initiation of replication was inhibited with rifampicin or chloramphenicol and after completion of ongoing rounds of replication the numbers of fully replicated chromosomes in individual cells were measured by flow cytometry. In rapidly growing cultures, with parallel replication of several chromosomes, cells will end up with 2n (n = 1, 2, 3) chromosomes if initiation occurs simultaneously at all origins. A culture with asynchronous initiation may in addition contain cells with irregular numbers (not equal to 2n) of chromosomes. The frequency of cells with irregular numbers of chromosomes is a measure of the degree of asynchrony of initiation. After inhibition of initiation and run-out of replication in rapidly growing B/r A and K-12 cultures, a small fraction of the cells (2-7%) contained 3, 5, 6 or 7 chromosomes. From these measurements it was calculated that initiation at four origins in a single cell occurred within a small fraction, 0.1, of the doubling time (tau). A dnaA(Ts) mutant strain grown at permissive temperature exhibited a very large fraction of cells with irregular numbers of chromosomes after drug treatment demonstrating virtually random timing of initiation. A similar pattern of chromosome number per cell was found after treatment of a recA strain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombination proteins and rescue of arrested replication forks.

              Recombination proteins play crucial roles in the rescue of inactivated replication forks in Escherichia coli. The enzymes that catalyze the repair of DNA double-strand breaks by a classical strand-exchange reaction (RecBCD, RecA) act in two well-characterized fork repair pathways. They repair the DNA double-strand end made when a replication fork runs into a single-strand interruption. They reset the DNA double-strand end generated by replication fork reversal when a component of the replication machinery is inactivated. In addition, recombination proteins also act at replication forks in ways other than the classical strand-exchange reaction. For example, the RuvAB enzyme that catalyzes Holliday junction branch-migration during homologous recombination is also able to catalyze replication fork reversal in certain replication mutants, i.e. to convert certain blocked replication forks into Holliday junctions. Finally, some of the actions of recombination proteins after replication impairment are still unclear, as for example in UV-irradiated cells, where RecFOR and RecA catalyze gap repair but also participate, in a yet undefined way, in "replisome reactivation".
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2014
                8 May 2014
                : 10
                : 5
                : e1004310
                Affiliations
                [1]Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
                University of Illinois at Urbana-Champaign, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MI RMS. Performed the experiments: MI. Analyzed the data: MI RMS. Wrote the paper: MI RMS.

                Article
                PGENETICS-D-13-01774
                10.1371/journal.pgen.1004310
                4014421
                24810600
                d9696faa-7070-48cc-a103-a8fb3a39dcd6
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 3 July 2013
                : 24 February 2014
                Page count
                Pages: 14
                Funding
                This work was supported by project ES101905 of the Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Nucleic Acids
                Nucleic Acid Components
                DNA
                Nucleotides
                Cell Biology
                Cell Processes
                Cell Cycle and Cell Division
                Cell Death
                Cellular Stress Responses
                Molecular Cell Biology
                Genetics
                Mutation
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Escherichia Coli
                Research and Analysis Methods
                Model Organisms
                Prokaryotic Models

                Genetics
                Genetics

                Comments

                Comment on this article