167
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anemia of inflammation

      , ,
      Blood
      American Society of Hematology

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anemia of inflammation (AI), also known as anemia of chronic disease (ACD), is regarded as the most frequent anemia in hospitalized and chronically ill patients. It is prevalent in patients with diseases that cause prolonged immune activation, including infection, autoimmune diseases, and cancer. More recently, the list has grown to include chronic kidney disease, congestive heart failure, chronic pulmonary diseases, and obesity. Inflammation-inducible cytokines and the master regulator of iron homeostasis, hepcidin, block intestinal iron absorption and cause iron retention in reticuloendothelial cells, resulting in iron-restricted erythropoiesis. In addition, shortened erythrocyte half-life, suppressed erythropoietin response to anemia, and inhibition of erythroid cell differentiation by inflammatory mediators further contribute to AI in a disease-specific pattern. Although the diagnosis of AI is a diagnosis of exclusion and is supported by characteristic alterations in iron homeostasis, hypoferremia, and hyperferritinemia, the diagnosis of AI patients with coexisting iron deficiency is more difficult. In addition to treatment of the disease underlying AI, the combination of iron therapy and erythropoiesis-stimulating agents can improve anemia in many patients. In the future, emerging therapeutics that antagonize hepcidin function and redistribute endogenous iron for erythropoiesis may offer additional options. However, based on experience with anemia treatment in chronic kidney disease, critical illness, and cancer, finding the appropriate indications for the specific treatment of AI will require improved understanding and a balanced consideration of the contribution of anemia to each patient's morbidity and the impact of anemia treatment on the patient's prognosis in a variety of disease settings.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Transfusion strategies for acute upper gastrointestinal bleeding.

          The hemoglobin threshold for transfusion of red cells in patients with acute gastrointestinal bleeding is controversial. We compared the efficacy and safety of a restrictive transfusion strategy with those of a liberal transfusion strategy. We enrolled 921 patients with severe acute upper gastrointestinal bleeding and randomly assigned 461 of them to a restrictive strategy (transfusion when the hemoglobin level fell below 7 g per deciliter) and 460 to a liberal strategy (transfusion when the hemoglobin fell below 9 g per deciliter). Randomization was stratified according to the presence or absence of liver cirrhosis. A total of 225 patients assigned to the restrictive strategy (51%), as compared with 61 assigned to the liberal strategy (14%), did not receive transfusions (P<0.001) [corrected].The probability of survival at 6 weeks was higher in the restrictive-strategy group than in the liberal-strategy group (95% vs. 91%; hazard ratio for death with restrictive strategy, 0.55; 95% confidence interval [CI], 0.33 to 0.92; P=0.02). Further bleeding occurred in 10% of the patients in the restrictive-strategy group as compared with 16% of the patients in the liberal-strategy group (P=0.01), and adverse events occurred in 40% as compared with 48% (P=0.02). The probability of survival was slightly higher with the restrictive strategy than with the liberal strategy in the subgroup of patients who had bleeding associated with a peptic ulcer (hazard ratio, 0.70; 95% CI, 0.26 to 1.25) and was significantly higher in the subgroup of patients with cirrhosis and Child-Pugh class A or B disease (hazard ratio, 0.30; 95% CI, 0.11 to 0.85), but not in those with cirrhosis and Child-Pugh class C disease (hazard ratio, 1.04; 95% CI, 0.45 to 2.37). Within the first 5 days, the portal-pressure gradient increased significantly in patients assigned to the liberal strategy (P=0.03) but not in those assigned to the restrictive strategy. As compared with a liberal transfusion strategy, a restrictive strategy significantly improved outcomes in patients with acute upper gastrointestinal bleeding. (Funded by Fundació Investigació Sant Pau; ClinicalTrials.gov number, NCT00414713.).
            • Record: found
            • Abstract: found
            • Article: not found

            Iron homeostasis in host defence and inflammation.

            Iron is an essential trace element for multicellular organisms and nearly all microorganisms. Although iron is abundant in the environment, common forms of iron are minimally soluble and therefore poorly accessible to biological organisms. Microorganisms entering a mammalian host face multiple mechanisms that further restrict their ability to obtain iron and thereby limit their pathogenicity. Iron levels also modulate host defence, as iron content in macrophages regulates their cytokine production. Here, we review recent advances that highlight the role of systemic and cellular iron-regulating mechanisms in protecting hosts from infection, emphasizing aspects that are applicable to human health and disease.
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial.

              Anaemia caused by iron deficiency is common in children younger than age 5 years in eastern Africa. However, there is concern that universal supplementation of children with iron and folic acid in areas of high malaria transmission might be harmful. We did a randomised, placebo-controlled trial, of children aged 1-35 months and living in Pemba, Zanzibar. We assigned children to daily oral supplementation with: iron (12.5 mg) and folic acid (50 mug; n=7950), iron, folic acid, and zinc (n=8120), or placebo (n=8006); children aged 1-11 months received half the dose. Our primary endpoints were all-cause mortality and admission to hospital. Analyses were by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN59549825. The iron and folic acid-containing groups of the trial were stopped early on Aug 19, 2003, on the recommendation of the data and safety monitoring board. To this date, 24 076 children contributed a follow-up of 25,524 child-years. Those who received iron and folic acid with or without zinc were 12% (95% CI 2-23, p=0.02) more likely to die or need treatment in hospital for an adverse event and 11% (1-23%, p=0.03) more likely to be admitted to hospital; there were also 15% (-7 to 41, p=0.19) more deaths in these groups. Routine supplementation with iron and folic acid in preschool children in a population with high rates of malaria can result in an increased risk of severe illness and death. In the presence of an active programme to detect and treat malaria and other infections, iron-deficient and anaemic children can benefit from supplementation. However, supplementation of those who are not iron deficient might be harmful. As such, current guidelines for universal supplementation with iron and folic acid should be revised.

                Author and article information

                Journal
                Blood
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                January 03 2019
                January 03 2019
                January 03 2019
                November 06 2018
                : 133
                : 1
                : 40-50
                Article
                10.1182/blood-2018-06-856500
                6536698
                30401705
                d976a78e-044c-4d3a-88a7-0df11fef7be3
                © 2018
                History

                Comments

                Comment on this article

                Related Documents Log