62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS

      research-article
      1 , 1 , *
      Nature neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The brain’s ability to tell time and produce complex spatiotemporal motor patterns is critical to anticipating the next ring of a telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing patterns of neural activity generated within recurrent neural networks. However, the relevant dynamic regimes of recurrent networks are highly sensitive to noise, i.e., chaotic. We describe a firing rate model that tells time on the order of seconds and generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the recurrent connections. The network operates in a novel dynamic regime that exhibits coexisting chaotic and locally stable trajectories. These stable patterns function as “dynamic attractors” and provide a novel feature characteristic of biological systems: the ability to “return” to the pattern being generated in the face of perturbations.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Neural networks and physical systems with emergent collective computational abilities.

          J Hopfield (1982)
          Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication.

            We present a method for learning nonlinear systems, echo state networks (ESNs). ESNs employ artificial recurrent neural networks in a way that has recently been proposed independently as a learning mechanism in biological brains. The learning method is computationally efficient and easy to use. On a benchmark task of predicting a chaotic time series, accuracy is improved by a factor of 2400 over previous techniques. The potential for engineering applications is illustrated by equalizing a communication channel, where the signal error rate is improved by two orders of magnitude.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What makes us tick? Functional and neural mechanisms of interval timing.

              Time is a fundamental dimension of life. It is crucial for decisions about quantity, speed of movement and rate of return, as well as for motor control in walking, speech, playing or appreciating music, and participating in sports. Traditionally, the way in which time is perceived, represented and estimated has been explained using a pacemaker-accumulator model that is not only straightforward, but also surprisingly powerful in explaining behavioural and biological data. However, recent advances have challenged this traditional view. It is now proposed that the brain represents time in a distributed manner and tells the time by detecting the coincidental activation of different neural populations.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                19 June 2013
                26 May 2013
                July 2013
                26 November 2013
                : 16
                : 7
                : 10.1038/nn.3405
                Affiliations
                [1 ]Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
                Author notes
                [* ]Correspondence to: dbuono@ 123456ucla.edu
                [2]

                Permanent address: Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina, and CONICET, Argentina

                Article
                NIHMS472497
                10.1038/nn.3405
                3753043
                23708144
                d978fe3b-f50c-4f35-8c74-2f67242fdda3

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R03 NS077340 || NS
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article