54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Large-Scale Chromosomal Rearrangements Fuel Rapid Adaptation in Yeast Populations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large-scale genome rearrangements have been observed in cells adapting to various selective conditions during laboratory evolution experiments. However, it remains unclear whether these types of mutations can be stably maintained in populations and how they impact the evolutionary trajectories. Here we show that chromosomal rearrangements contribute to extremely high copper tolerance in a set of natural yeast strains isolated from Evolution Canyon (EC), Israel. The chromosomal rearrangements in EC strains result in segmental duplications in chromosomes 7 and 8, which increase the copy number of genes involved in copper regulation, including the crucial transcriptional activator CUP2 and the metallothionein CUP1. The copy number of CUP2 is correlated with the level of copper tolerance, indicating that increasing dosages of a single transcriptional activator by chromosomal rearrangements has a profound effect on a regulatory pathway. By gene expression analysis and functional assays, we identified three previously unknown downstream targets of CUP2: PHO84, SCM4, and CIN2, all of which contributed to copper tolerance in EC strains. Finally, we conducted an evolution experiment to examine how cells maintained these changes in a fluctuating environment. Interestingly, the rearranged chromosomes were reverted back to the wild-type configuration at a high frequency and the recovered chromosome became fixed in less selective conditions. Our results suggest that transposon-mediated chromosomal rearrangements can be highly dynamic and can serve as a reversible mechanism during early stages of adaptive evolution.

          Author Summary

          Large-scale chromosomal rearrangements are often associated with dramatic phenotypic changes such as cancer cell formation. It has been speculated that large-scale chromosomal rearrangements may play a crucial role at the early stages of adaptation, since they can quickly change the expression level of multiple genes or even a whole pathway by changing the gene copy number. Nonetheless, it remains unclear whether such mutations can be stably maintained in populations, especially in a fluctuating environment. Here we characterize an adaptive copper-tolerant phenotype in a wild yeast population. We discovered that the adaptive phenotype was contributed to by two large-scale chromosomal rearrangements, which increased the copy number of key components of copper regulation, including a crucial transcriptional activator, Cup2. We further identified three previously unknown downstream targets of Cup2 that also contributed to copper tolerance. Finally, we conducted an evolution experiment to test the stability of the rearranged chromosomes under conditions of relaxed selection. We found that the rearranged chromosomes returned back to the original configuration at a high frequency, and the wild type-like chromosome became fixed in all the evolved cultures. Our results suggest that chromosomal rearrangements can provide a reversible mechanism for cells when adapting to a fluctuating environment.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Population genomics of domestic and wild yeasts

          Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species leading to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to four-fold or more coverage of the genome sequences of over seventy isolates of the baker's yeast, S. cerevisiae, and its closest relative, S. paradoxus. We examine variation in gene content, SNPs, indels, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. Interestingly, S. paradoxus populations are well delineated along geographic boundaries while the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequencing and comparison of yeast species to identify genes and regulatory elements.

            Identifying the functional elements encoded in a genome is one of the principal challenges in modern biology. Comparative genomics should offer a powerful, general approach. Here, we present a comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species (S. paradoxus, S. mikatae and S. bayanus). We first aligned the genomes and characterized their evolution, defining the regions and mechanisms of change. We then developed methods for direct identification of genes and regulatory motifs. The gene analysis yielded a major revision to the yeast gene catalogue, affecting approximately 15% of all genes and reducing the total count by about 500 genes. The motif analysis automatically identified 72 genome-wide elements, including most known regulatory motifs and numerous new motifs. We inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions. The results have implications for genome analysis of diverse organisms, including the human.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of aneuploidy on cellular physiology and cell division in haploid yeast.

              Aneuploidy is a condition frequently found in tumor cells, but its effect on cellular physiology is not known. We have characterized one aspect of aneuploidy: the gain of extra chromosomes. We created a collection of haploid yeast strains that each bear an extra copy of one or more of almost all of the yeast chromosomes. Their characterization revealed that aneuploid strains share a number of phenotypes, including defects in cell cycle progression, increased glucose uptake, and increased sensitivity to conditions interfering with protein synthesis and protein folding. These phenotypes were observed only in strains carrying additional yeast genes, which indicates that they reflect the consequences of additional protein production as well as the resulting imbalances in cellular protein composition. We conclude that aneuploidy causes not only a proliferative disadvantage but also a set of phenotypes that is independent of the identity of the individual extra chromosomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2013
                January 2013
                24 January 2013
                : 9
                : 1
                : e1003232
                Affiliations
                [1 ]Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
                [2 ]Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
                [3 ]Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
                Washington University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: S-LC J-YL. Performed the experiments: S-LC H-YL S-YT. Analyzed the data: S-LC J-YL. Contributed reagents/materials/analysis tools: J-YL. Wrote the paper: S-LC J-YL.

                Article
                PGENETICS-D-12-01428
                10.1371/journal.pgen.1003232
                3554576
                23358723
                d9799dfa-83f8-4ff6-9b00-3844e40216f2
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 June 2012
                : 26 November 2012
                Page count
                Pages: 15
                Funding
                This work was supported by Academia Sinica of Taiwan (grant no. 100-CDA-L04) and the National Science Council of Taiwan (grant no. NSC100-2321-B-001-021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Genetics
                Genomics
                Microbiology
                Molecular Cell Biology

                Genetics
                Genetics

                Comments

                Comment on this article