53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes from nerve terminals to the soma, and represents a general gateway for the delivery of virulence factors and pathogens to the central nervous system.

          Author Summary

          Botulinum neurotoxins are the most toxic molecules known to mankind, and as a result, are currently listed among the top bio-threats. However, their ability to bind specifically to neurons and their inhibitory effects on regulated secretion prompted their clinical use in pathologies characterised by increased muscular tone, such as dystonia and various forms of spasticity, or abnormal secretion, such as drooling and excessive sweating, to cite a few. As a consequence, botulinum neurotoxin A, which is the serotype most commonly used in human therapy, has become the treatment of choice for an ever-expanding number of pathological and non-pathological (e.g. cosmetic) conditions. All current indications show that the systemic effects and toxicity of botulinum neurotoxin A are minimised by the specific route of administration (local injection) and the low diffusion of this molecule in tissues. However, recent reports suggest that in contrast to this common belief, botulinum neurotoxin A is able to reach distal sites in the body and may have previously unanticipated effects in the central nervous system. In this study, we demonstrate that botulinum neurotoxin A and E enter alternative endocytic pathway(s) in addition to synaptic vesicle recycling, and undergo long-range transport in a non degradative compartment in spinal cord motor neurons. Our results show that axonal retrograde transport is a common pathway for the dissemination in the central nervous system of pathogens and virulence factors important for human and animal health.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Directed differentiation of embryonic stem cells into motor neurons.

          Inductive signals and transcription factors involved in motor neuron generation have been identified, raising the question of whether these developmental insights can be used to direct stem cells to a motor neuron fate. We show that developmentally relevant signaling factors can induce mouse embryonic stem (ES) cells to differentiate into spinal progenitor cells, and subsequently into motor neurons, through a pathway recapitulating that used in vivo. ES cell-derived motor neurons can populate the embryonic spinal cord, extend axons, and form synapses with target muscles. Thus, inductive signals involved in normal pathways of neurogenesis can direct ES cells to form specific classes of CNS neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury.

            We have reviewed a battery of useful tests for evaluating sensorimotor function and plasticity acutely and chronically in unilateral rat models of central nervous system injury. These tests include forelimb use for weight shifting during vertical exploration in a cylindrical enclosure, an adhesive removal test of sensory function, and forelimb placing. These tests monitor recovery of sensorimotor function independent of the extent of test experience. Data are presented for four models, including permanent focal ischemia, focal injury to the forelimb area of sensorimotor cortex, dopaminergic neurodegeneration of the nigrostriatal system, and cervical spinal cord injury. The effect of the dendrite growth promoting factor, Osteogenic Protein-1 (OP-1) on outcome following permanent middle cerebral artery (MCA) occlusion was used as an example to illustrate how the tests can be applied preclinically. OP-1 showed a beneficial effect on limb use asymmetry in the cylinder test.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurotoxins affecting neuroexocytosis.

              Nerve terminals are specific sites of action of a very large number of toxins produced by many different organisms. The mechanism of action of three groups of presynaptic neurotoxins that interfere directly with the process of neurotransmitter release is reviewed, whereas presynaptic neurotoxins acting on ion channels are not dealt with here. These neurotoxins can be grouped in three large families: 1) the clostridial neurotoxins that act inside nerves and block neurotransmitter release via their metalloproteolytic activity directed specifically on SNARE proteins; 2) the snake presynaptic neurotoxins with phospholipase A(2) activity, whose site of action is still undefined and which induce the release of acethylcholine followed by impairment of synaptic functions; and 3) the excitatory latrotoxin-like neurotoxins that induce a massive release of neurotransmitter at peripheral and central synapses. Their modes of binding, sites of action, and biochemical activities are discussed in relation to the symptoms of the diseases they cause. The use of these toxins in cell biology and neuroscience is considered as well as the therapeutic utilization of the botulinum neurotoxins in human diseases characterized by hyperfunction of cholinergic terminals.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2012
                December 2012
                27 December 2012
                : 8
                : 12
                : e1003087
                Affiliations
                [1 ]Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
                [2 ]CNR, Neuroscience Institute, Pisa, Italy
                [3 ]Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
                [4 ]Department of Biomedical Sciences, University of Padova, Padova, Italy
                University of Illinois, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LR FG KB MM MC GS. Performed the experiments: LR FG MM KB. Analyzed the data: LR FG KB MM GS. Contributed reagents/materials/analysis tools: OR GM. Wrote the paper: LR FG KB MC GS. Designed Microfluidic chambers: GM.

                [¤]

                Current address: Department of Experimental Medicine, Section of Pharmacology and Toxicology, Genova, Italy

                Article
                PPATHOGENS-D-12-00849
                10.1371/journal.ppat.1003087
                3531519
                23300443
                d988ea9e-3664-471c-96ce-70b7d8fb1312
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 April 2012
                : 2 November 2012
                Page count
                Pages: 19
                Funding
                This work was supported by the Silvia Mion Prize, University of Verona (LR), Cancer Research UK (GS, KB), the Weizmann-UK Making Connections program (GS), Italian Ministry of Research (FIRB2010-RBFR10ZBYZ_003 to LR, PRIN2008 to OR and MC), Tuscany Region (Health Program 2009 to MC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Bacterial Pathogens
                Neuroscience
                Molecular Neuroscience
                Signaling Pathways
                Neurophysiology
                Peripheral Nervous System
                Synapses
                Cellular Neuroscience
                Motor Systems
                Neuroimaging
                Neurotransmitters
                Toxicology
                Neurotoxicology
                Toxic Agents
                Toxin Binding
                Medicine
                Drugs and Devices
                Drug Information
                Neurology
                Neuromuscular Diseases
                Toxicology
                Neurotoxicology
                Toxic Agents

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article