6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d5944247e214">Protein assembly into amyloid fibers underlies such neurodegenerative disorders as Alzheimer’s disease and Parkinson’s disease. Type 2 diabetes (T2D) also involves amyloid formation, although in the pancreas. Because there are no cures for amyloid diseases and T2D is on the rise due to an increasing prevalence of obesity, identifying involved mechanisms and control processes is of utmost importance. Extracellular vesicles (EVs) can mediate physiological and pathological communication both locally and at a distance. Here, we demonstrate that EVs secreted from healthy, but not from T2D, pancreatic cells slow amyloid formation of the major peptide found in amyloid deposits in T2D. We propose an EV-mediated process that tempers amyloid formation in the pancreas at normal conditions, which breaks down in T2D due to altered EV protein–lipid composition. </p><p class="first" id="d5944247e217">Extracellular vesicles (EVs) are small vesicles released by cells to aid cell–cell communication and tissue homeostasis. Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in pancreatic islets of patients with type 2 diabetes (T2D). IAPP is secreted in conjunction with insulin from pancreatic β cells to regulate glucose metabolism. Here, using a combination of analytical and biophysical methods in vitro, we tested whether EVs isolated from pancreatic islets of healthy patients and patients with T2D modulate IAPP amyloid formation. We discovered that pancreatic EVs from healthy patients reduce IAPP amyloid formation by peptide scavenging, but T2D pancreatic and human serum EVs have no effect. In accordance with these differential effects, the insulin:C-peptide ratio and lipid composition differ between EVs from healthy pancreas and EVs from T2D pancreas and serum. It appears that healthy pancreatic EVs limit IAPP amyloid formation via direct binding as a tissue-specific control mechanism. </p>

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          WSXM: a software for scanning probe microscopy and a tool for nanotechnology.

          In this work we briefly describe the most relevant features of WSXM, a freeware scanning probe microscopy software based on MS-Windows. The article is structured in three different sections: The introduction is a perspective on the importance of software on scanning probe microscopy. The second section is devoted to describe the general structure of the application; in this section the capabilities of WSXM to read third party files are stressed. Finally, a detailed discussion of some relevant procedures of the software is carried out.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies

            Stuendl et al. show that CSF exosomes of patients with Parkinson’s disease or dementia with Lewy bodies contain α-synuclein and induce α-synuclein aggregation in a reporter cell line. Thus, exosomes may support inter-neuronal transmission of α-synuclein pathology. CSF exosomal α-synuclein may serve as a biomarker in α-synuclein-related neurodegeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The clinical utility of C-peptide measurement in the care of patients with diabetes

              C-peptide is produced in equal amounts to insulin and is the best measure of endogenous insulin secretion in patients with diabetes. Measurement of insulin secretion using C-peptide can be helpful in clinical practice: differences in insulin secretion are fundamental to the different treatment requirements of Type 1 and Type 2 diabetes. This article reviews the use of C-peptide measurement in the clinical management of patients with diabetes, including the interpretation and choice of C-peptide test and its use to assist diabetes classification and choice of treatment. We provide recommendations for where C-peptide should be used, choice of test and interpretation of results. With the rising incidence of Type 2 diabetes in younger patients, the discovery of monogenic diabetes and development of new therapies aimed at preserving insulin secretion, the direct measurement of insulin secretion may be increasingly important. Advances in assays have made C-peptide measurement both more reliable and inexpensive. In addition, recent work has demonstrated that C-peptide is more stable in blood than previously suggested or can be reliably measured on a spot urine sample (urine C-peptide:creatinine ratio), facilitating measurement in routine clinical practice. The key current clinical role of C-peptide is to assist classification and management of insulin-treated patients. Utility is greatest after 3–5 years from diagnosis when persistence of substantial insulin secretion suggests Type 2 or monogenic diabetes. Absent C-peptide at any time confirms absolute insulin requirement and the appropriateness of Type 1 diabetes management strategies regardless of apparent aetiology.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 17 2017
                October 17 2017
                : 114
                : 42
                : 11127-11132
                Article
                10.1073/pnas.1711389114
                5651775
                28973954
                d98cb04c-bb32-42c7-955c-e4ae3dee529f
                © 2017
                History

                Comments

                Comment on this article