28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disturbed T Cell Signaling and Altered Th17 and Regulatory T Cell Subsets in the Pathogenesis of Systemic Lupus Erythematosus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies against nuclear components. Circulating immune complexes of chromatin and autoantibodies deposit in various tissues leading to inflammation and tissue damage. It has been well documented that autoimmunity in SLE depends on autoreactive T cells. In this review, we summarize the literature that addresses the roles of T cell signaling, and Th17 and regulatory T cells (Tregs) in the development of SLE. T cell receptor (TCR) signaling appears to be aberrant in T cells of patients with SLE. In particular, defects in the TCRζ chain, Syk kinase, and calcium signaling molecules have been associated with SLE, which leads to hyperresponsive autoreactive T cells. Furthermore, in patients with SLE increased numbers of autoreactive Th17 cells have been documented, and Th17 cells appear to be responsible for tissue inflammation and damage. In addition, reduced numbers of Tregs as well as Tregs with an impaired regulatory function have been associated with SLE. The altered balance between the number of Tregs and Th17 cells in SLE may result from changes in the cytokine milieu that favors the development of Th17 cells over Tregs.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.

          We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A function for interleukin 2 in Foxp3-expressing regulatory T cells.

            Regulatory T cells (T(reg) cells) expressing the forkhead family transcription factor Foxp3 are critical mediators of dominant immune tolerance to self. Most T(reg) cells constitutively express the high-affinity interleukin 2 (IL-2) receptor alpha-chain (CD25); however, the precise function of IL-2 in T(reg) cell biology has remained controversial. To directly assess the effect of IL-2 signaling on T(reg) cell development and function, we analyzed mice containing the Foxp3(gfp) knock-in allele that were genetically deficient in either IL-2 (Il2(-/-)) or CD25 (Il2ra(-/-)). We found that IL-2 signaling was dispensable for the induction of Foxp3 expression in thymocytes from these mice, which indicated that IL-2 signaling does not have a nonredundant function in the development of T(reg) cells. Unexpectedly, Il2(-/-) and Il2ra(-/-) T(reg) cells were fully able to suppress T cell proliferation in vitro. In contrast, Foxp3 was not expressed in thymocytes or peripheral T cells from Il2rg(-/-) mice. Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism. Thus, IL-2 signaling seems to be critically required for maintaining the homeostasis and competitive fitness of T(reg) cells in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular antagonism and plasticity of regulatory and inflammatory T cell programs.

              Regulatory T (Treg) and T helper 17 (Th17) cells were recently proposed to be reciprocally regulated during differentiation. To understand the underlying mechanisms, we utilized a Th17 reporter mouse with a red fluorescent protein (RFP) sequence inserted into the interleukin-17F (IL-17F) gene. Using IL-17F-RFP together with a Foxp3 reporter, we found that the development of Th17 and Foxp3(+) Treg cells was associated in immune responses. Although TGF-beta receptor I signaling was required for both Foxp3 and IL-17 induction, SMAD4 was only involved in Foxp3 upregulation. Foxp3 inhibited Th17 differentiation by antagonizing the function of the transcription factors RORgammat and ROR*. In contrast, IL-6 overcame this suppressive effect of Foxp3 and, together with IL-1, induced genetic reprogramming in Foxp3(+) Treg cells. STAT3 regulated Foxp3 downregulation, whereas STAT3, RORgamma, and ROR* were required for IL-17 expression in Treg cells. Our data demonstrate molecular antagonism and plasticity of Treg and Th17 cell programs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                30 November 2015
                2015
                : 6
                : 610
                Affiliations
                [1] 1Department of Nephrology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences , Nijmegen, Netherlands
                Author notes

                Edited by: James Harris, Monash University, Australia

                Reviewed by: Zhibin Chen, University of Miami Miller School of Medicine, USA; Kelli Patricia Anne MacDonald, Queensland Institute of Medical Research, Australia

                *Correspondence: Johan van der Vlag, johan.vandervlag@ 123456radboudumc.nl

                Specialty section: This article was submitted to Immunological Tolerance, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2015.00610
                4663269
                26648939
                d995e6c7-61f3-4cf6-bae9-e0168d8b708a
                Copyright © 2015 Rother and van der Vlag.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 July 2015
                : 16 November 2015
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 104, Pages: 10, Words: 8250
                Funding
                Funded by: Radboud Universitair Medisch Centrum 10.13039/501100006209
                Award ID: RIMLS grant 2014
                Categories
                Immunology
                Review

                Immunology
                systemic lupus erythematosus,t cells,autoimmunity,tcr signaling,th17 cells,tregs
                Immunology
                systemic lupus erythematosus, t cells, autoimmunity, tcr signaling, th17 cells, tregs

                Comments

                Comment on this article