1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of marathon race on selected myokines and sclerostin in middle-aged male amateur runners

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, there has been increasing interest in the homeostatic response to extreme exercises, especially in the integrated function of muscle and bone. The aim of this study was to evaluate the effects of a marathon race on selected myokines and sclerostin in 10 male recreational runners (mean age 41 ± 7.7 years). Body composition, bone mineral density (BMD), and the serum concentration of myostatin, irisin, sclerostin, osteoprotegerin (OPG), 25-hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH), high-sensitivity interleukin-6 (hsIL-6), tumor necrosis factor α (TNFα), high-sensitivity C-reactive protein (hsCRP) and myoglobin, were determined 24 h before and 24 h and 72 h after a marathon race. Post-marathon increases were observed in the levels of myostatin (1.2-fold), OPG (1.5-fold), and PTH (1.3-fold), hsIL-6 (1.9-fold), myoglobin (4.1-fold), hsCRP (fivefold), TNFα (2.6-fold), after 24 h; and in myostatin (1.2-fold), irisin (1.1-fold), sclerostin (1.3-fold), OPG (1.3-fold), and PTH (1.4-fold), hsIL-6 (1.4-fold), TNFα (1.9-fold), after 72 h compared to the baseline level. The results show that in response to the marathon run, a complex network of endocrine interactions is initiated. Further research is needed to fully elucidate the long-term impact of prolonged high intensity exercise on the human body.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Biochemical markers of muscular damage.

          Muscle tissue may be damaged following intense prolonged training as a consequence of both metabolic and mechanical factors. Serum levels of skeletal muscle enzymes or proteins are markers of the functional status of muscle tissue, and vary widely in both pathological and physiological conditions. Creatine kinase, lactate dehydrogenase, aldolase, myoglobin, troponin, aspartate aminotransferase, and carbonic anhydrase CAIII are the most useful serum markers of muscle injury, but apoptosis in muscle tissues subsequent to strenuous exercise may be also triggered by increased oxidative stress. Therefore, total antioxidant status can be used to evaluate the level of stress in muscle by other markers, such as thiobarbituric acid-reactive substances, malondialdehyde, sulfhydril groups, reduced glutathione, oxidized glutathione, superoxide dismutase, catalase and others. As the various markers provide a composite picture of muscle status, we recommend using more than one to provide a better estimation of muscle stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans.

            1. The present study investigates to what extent and by which time course prolonged strenuous exercise influences the plasma concentration of pro-inflammatory and inflammation responsive cytokines as well as cytokine inhibitors and anti-inflammatory cytokines. 2. Ten male subjects (median age 27.5 years, range 24-37) completed the Copenhagen Marathon 1997 (median running time 3 : 26 (h : min), range 2 : 40-4 : 20). Blood samples were obtained before, immediately after and then every 30 min in a 4 h post-exercise recovery period. 3. The plasma concentrations of tumour necrosis factor (TNF)alpha, interleukin (IL)-1beta, IL-6, IL-1ra, sTNF-r1, sTNF-r2 and IL-10 were measured by enzyme-linked immunosorbent assay (ELISA). The highest concentration of IL-6 was found immediately after the race, whereas IL-1ra peaked 1 h post exercise (128-fold and 39-fold increase, respectively, as compared with the pre-exercise values). The plasma level of IL-1beta, TNFalpha, sTNF-r1 and sTNF-r2 peaked in the first hour after the exercise (2. 1-, 2.3-, 2.7- and 1.6-fold, respectively). The plasma level of IL-10 showed a 27-fold increase immediately post exercise. 4. In conclusion, strenuous exercise induces an increase in the pro-inflammatory cytokines TNFalpha and IL-1beta and a dramatic increase in the inflammation responsive cytokine IL-6. This is balanced by the release of cytokine inhibitors (IL-1ra, sTNF-r1 and sTNF-r2) and the anti-inflammatory cytokine IL-10. The study suggests that cytokine inhibitors and anti-inflammatory cytokines restrict the magnitude and duration of the inflammatory response to exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise.

              In mouse, PGC1-α overexpression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. One prior study has shown that FNDC5 induces browning of subcutaneous fat in mice and mediates beneficial effects of exercise on metabolism, but a more recent study using gene expression arrays failed to detect a robust increase in FNDC5 mRNA in human muscles from exercising subjects. No prior study has reported on the physiological regulation and role of circulating irisin and FNDC5 in humans. A. FNDC5 gene expression studies: We first examined tissue distribution of FNDC5 in humans. B. Cross-sectional studies: Predictors of FNDC5 mRNA expression levels were examined in muscle tissues from 18 healthy subjects with a wide range of BMI. Assays were optimized to measure circulating FNDC5 and irisin levels, and their associations with anthropometric and metabolic parameters were analyzed in two cross-sectional studies that examined 117 middle-aged healthy women and 14 obese subjects, respectively. C. Interventional studies: The effect of weight loss on FNDC5 mRNA and/or circulating irisin levels was examined in 14 obese subjects before and after bariatric surgery. The effect of acute and chronic exercise was then assessed in 15 young healthy adults who performed intermittent sprint running sessions over an 8 week period. Tissue arrays demonstrated that in humans, the FNDC5 gene is predominantly expressed in muscle. Circulating irisin was detected in the serum or plasma of all subjects studied, whereas circulating FNDC5 was detected in only a distinct minority of the subjects. Cross-sectional studies revealed that circulating irisin levels were positively correlated with biceps circumference (used as a surrogate marker of muscle mass herein), BMI, glucose, ghrelin, and IGF-1. In contrast, irisin levels were negatively correlated with age, insulin, cholesterol, and adiponectin levels, indicating a possible compensatory role of irisin in metabolic regulation. Multivariate regression analysis revealed that biceps circumference was the strongest predictor of circulating irisin levels underlying the association between irisin and metabolic factors in humans at baseline. Both muscle FNDC5 mRNA levels and circulating irisin levels were significantly downregulated 6 months after bariatric surgery. Circulating irisin levels were significantly upregulated 30 min after acute exercise and were correlated mainly with ATP levels and secondarily with metabolites related to glycolysis and lipolysis in muscle. Similar to mice, the FNDC5 gene is expressed in human muscle. Age and muscle mass are the primary predictors of circulating irisin, with young male athletes having several fold higher irisin levels than middle-aged obese women. Circulating irisin levels increase in response to acute exercise whereas muscle FNDC5 mRNA and circulating irisin levels decrease after surgically induced weight loss in parallel to decrease in body mass. Further studies are needed to study the regulation of irisin levels and its physiological effects in humans and to elucidate the mechanisms underlying these effects. Published by Elsevier Inc.
                Bookmark

                Author and article information

                Contributors
                sliwicka@awf.poznan.pl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 February 2021
                2 February 2021
                2021
                : 11
                : 2813
                Affiliations
                [1 ]Department of Physiology and Biochemistry, Poznan University of Physical Education, Królowej Jadwigi Str. 27/39, 61-871 Poznań, Poland
                [2 ]Department of Physiotherapy, State University of Applied Science in Nowy Sącz, Nowy Sącz, Poland
                [3 ]Faculty of Rehabilitation and Sport, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Kalisz, Poland
                [4 ]GRID grid.415028.a, ISNI 0000 0004 0620 8558, Department of Applied Physiology, , Mossakowski Medical Research Centre, Polish Academy of Sciences, ; Warsaw, Poland
                [5 ]Department of Physical Therapy and Sports Recovery, Poznan University of Physical Education, Poznań, Poland
                Author information
                https://orcid.org/0000-0002-5475-3011
                https://orcid.org/0000-0002-0515-0652
                https://orcid.org/0000-0002-3683-9428
                https://orcid.org/0000-0002-1987-3050
                https://orcid.org/0000-0001-8779-623X
                Article
                82288
                10.1038/s41598-021-82288-z
                7854637
                33531538
                d9a3cf9c-4423-47b3-aa05-65db24c6c61c
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 September 2020
                : 15 January 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cytokines,hormones
                Uncategorized
                cytokines, hormones

                Comments

                Comment on this article