33
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent molecular studies have identified substantial fungal diversity in indoor environments. Fungi and fungal particles have been linked to a range of potentially unwanted effects in the built environment, including asthma, decay of building materials, and food spoilage. The study of the built mycobiome is hampered by a number of constraints, one of which is the poor state of the metadata annotation of fungal DNA sequences from the built environment in public databases. In order to enable precise interrogation of such data – for example, “retrieve all fungal sequences recovered from bathrooms” – a workshop was organized at the University of Gothenburg (May 23-24, 2016) to annotate public fungal barcode (ITS) sequences according to the MIxS-Built Environment annotation standard (http://gensc.org/mixs/). The 36 participants assembled a total of 45,488 data points from the published literature, including the addition of 8,430 instances of countries of collection from a total of 83 countries, 5,801 instances of building types, and 3,876 instances of surface-air contaminants. The results were implemented in the UNITE database for molecular identification of fungi (http://unite.ut.ee) and were shared with other online resources. Data obtained from human/animal pathogenic fungi will furthermore be verified on culture based metadata for subsequent inclusion in the ISHAM-ITS database (http://its.mycologylab.org).

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The magnitude of fungal diversity: the 1.5 million species estimate revisited

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances

              The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants' microbiome combined with selective pressures imposed by the occupants' behaviors and the building itself. We set out to determine the pattern of fungal diversity and composition in indoor air on a local scale and to identify processes behind that pattern. We surveyed airborne fungal assemblages within 1-month time periods at two seasons, with high replication, indoors and outdoors, within and across standardized residences at a university housing facility. Fungal assemblages indoors were diverse and strongly determined by dispersal from outdoors, and no fungal taxa were found as indicators of indoor air. There was a seasonal effect on the fungi found in both indoor and outdoor air, and quantitatively more fungal biomass was detected outdoors than indoors. A strong signal of isolation by distance existed in both outdoor and indoor airborne fungal assemblages, despite the small geographic scale in which this study was undertaken (<500 m). Moreover, room and occupant behavior had no detectable effect on the fungi found in indoor air. These results show that at the local level, outdoor air fungi dominate the patterning of indoor air. More broadly, they provide additional support for the growing evidence that dispersal limitation, even on small geographic scales, is a key process in structuring the often-observed distance–decay biogeographic pattern in microbial communities.
                Bookmark

                Author and article information

                Journal
                MycoKeys
                MC
                Pensoft Publishers
                1314-4049
                1314-4057
                September 26 2016
                September 26 2016
                : 16
                : 1-15
                Article
                10.3897/mycokeys.16.10000
                d9a6fd6e-6093-488d-837d-db7f032854e5
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article