18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      bla CTX-M-152, a Novel Variant of CTX-M-group-25, Identified in a Study Performed on the Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural environment influenced by anthropogenic activities creates selective pressure for acquisition and spread of resistance genes. In this study, we determined the prevalence of Extended Spectrum β-Lactamases producing gram negative bacteria from the River Yamuna, India, and report the identification and characterization of a novel CTX-M gene variant bla CTX-M-152 . Of the total 230 non-duplicate isolates obtained from collected water samples, 40 isolates were found positive for ESBL production through Inhibitor-Potentiation Disc Diffusion test. Based on their resistance profile, 3% were found exhibiting pandrug resistance (PDR), 47% extensively drug resistance (XDR), and remaining 50% showing multidrug resistant (MDR). Following screening and antimicrobial profiling, characterization of ESBLs ( bla TEM and bla CTX-M ), and mercury tolerance determinants ( merP, merT, and merB) were performed. In addition to abundance of bla TEM-116 (57.5%) and bla CTX-M-15 (37.5%), bacteria were also found to harbor other variants of ESBLs like bla CTX-M-71 (5%), bla CTX-M-3 (7.5%), bla CTX-M-32 (2.5%), bla CTX-M-152 (7.5%), bla CTX-M-55 (2.5%), along with some non-ESBLs; bla TEM-1 (25%) and bla OXY (5%). Additionally, co-occurrence of mercury tolerance genes were observed among 40% of isolates. In silico studies of the new variant, bla CTX-M-152 were conducted through modeling for the generation of structure followed by docking to determine its catalytic profile. CTX-M-152 was found to be an out-member of CTX-M-group-25 due to Q26H, T154A, G89D, P99S, and D146G substitutions. Five residues Ser70, Asn132, Ser237, Gly238, and Arg273 were found responsible for positioning of cefotaxime into the active site through seven H-bonds with binding energy of -7.6 Kcal/mol. Despite small active site, co-operative interactions of Ser237 and Arg276 were found actively contributing to its high catalytic efficiency. To the best of our knowledge, this is the first report of bla CTX-M-152 of CTX-M-group-25 from Indian subcontinent. Taking a note of bacteria harboring such high proportion of multidrug and mercury resistance determinants, their presence in natural water resources employed for human consumption increases the chances of potential risk to human health. Hence, deeper insights into mechanisms pertaining to resistance development are required to frame out strategies to tackle the situation and prevent acquisition and dissemination of resistance determinants so as to combat the escalating burden of infectious diseases.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes.

          R Bonnet (2004)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011

            Surveillance of antimicrobial agent resistance provides important information to guide microbiologists and infectious disease specialists understanding of the control and the spread of resistance mechanisms within the local environment. Continued monitoring of antimicrobial resistance patterns in the community and in local hospital environments is essential to guide effective empiric therapy. The Study for Monitoring Antimicrobial Resistance Trends (SMART) has monitored the in vitro susceptibility patterns of clinical Gram-negative bacilli to antimicrobial agents collected worldwide from intra-abdominal infections since 2002 and urinary tract infections since 2009. Resistance trends, with a particular focus on carbapenem resistance and the rate of extended-spectrum β-lactamases (ESBLs), were analyzed. Isolates from intra-abdominal infections (n = 92,086) and urinary-tract infections (n = 24,705) were collected and tested using Clinical and Laboratory Standards Institute methods. This review presents carbapenem susceptibility and ESBL rates over ten years of SMART study analysis, including key publications during this period. The SMART study has proved to be a valuable resource in determining pathogen prevalence and antibiotic susceptibility over the last ten years and continues to provide evidence for regulatory susceptibility breakpoints and clinical decision making.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone.

              We determined the complete nucleotide sequences of three plasmids that encode CTX-M extended-spectrum beta-lactamases (ESBLs) in pulsed-field gel electrophoresis-defined United Kingdom variants (strains A, C, and D) of the internationally prevalent Escherichia coli O25:H4-ST131 clone. Plasmid pEK499 (strain A; 117,536 bp) was a fusion of type FII and FIA replicons and harbored the following 10 antibiotic resistance genes conferring resistance to eight antibiotic classes: bla(CTX-M-15), bla(OXA-1), bla(TEM-1,) aac6'-Ib-cr, mph(A), catB4, tet(A), and the integron-borne dfrA7, aadA5, and sulI genes. pEK516 (strain D; 64,471 bp) belonged to incompatibility group IncFII and carried seven antibiotic resistance genes: bla(CTX-M-15), bla(OXA-1), bla(TEM-1), aac6'-Ib-cr, catB4, and tet(A), all as in pEK499. It also carried aac3-IIa, conferring gentamicin resistance, and was highly related to pC15-1a, a plasmid encoding the CTX-M-15 enzyme in Canada. By contrast, pEK204 (strain C; 93,732 bp) belonged to incompatibility group IncI1 and carried only two resistance genes, bla(CTX-M-3) and bla(TEM-1). It probably arose by the transposition of Tn3 and ISEcp1-bla(CTX-M-3) elements into a pCOLIb-P9-like plasmid. We conclude that (i) United Kingdom variants of the successful E. coli ST131 clone have acquired different plasmids encoding CTX-M ESBLs on separate occasions, (ii) the bla(CTX-M-3) and bla(CTX-M-15) genes on pEK204 and pEK499/pEK516 represent separate escape events, and (iii) IncFII plasmids harboring bla(CTX-M-15) have played a crucial role in the global spread of CTX-M-15 ESBLs in E. coli.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                23 February 2016
                2016
                : 7
                : 176
                Affiliations
                [1] 1Microbiology Research Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi, India
                [2] 2Molecular Biology Laboratory, School of Biotechnology, Yeungnam University Gyeongsan, South Korea
                Author notes

                Edited by: Gilberto Igrejas, University of Trás-os-Montes and Alto Douro, Portugal

                Reviewed by: Carla Novais, Porto University, Portugal; Polpass Arul Jose, CSIR-Central Salt and Marine Chemicals Research Institute, India

                *Correspondence: Qazi M. R. Haq haqqmr@ 123456gmail.com

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work.

                Article
                10.3389/fmicb.2016.00176
                4762991
                26941715
                d9a7ca51-2089-43bb-a453-5496380a7cf4
                Copyright © 2016 Azam, Jan and Haq.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 October 2015
                : 01 February 2016
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 55, Pages: 13, Words: 9148
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                antibiotics,esbl,mechanisms of resistance,polluted environment,resistance genes

                Comments

                Comment on this article