3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pathogenic TSH β-Subunit Variant C105Vfs114X Causes a Modified Signaling Profile at TSHR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (1) Background: Central congenital hypothyroidism (CCH) is a rare endocrine disorder that can be caused by mutations in the β-subunit of thyrotropin ( TSHB). The TSHB mutation C105Vfs114X leads to isolated thyroid-stimulating-hormone-(TSH)-deficiency and results in a severe phenotype. The aim of this study was to gain more insight into the underlying molecular mechanism and the functional effects of this mutation based on two assumptions: a) the three-dimensional (3D) structure of TSH should be modified with the C105V substitution, and/or b) whether the C-terminal modifications lead to signaling differences. (2) Methods: wild-type (WT) and different mutants of hTSH were generated in human embryonic kidney 293 cells (HEK293 cells) and TSH preparations were used to stimulate thyrotropin receptor (TSHR) stably transfected into follicular thyroid cancer cells (FTC133-TSHR cells) and transiently transfected into HEK293 cells. Functional characterization was performed by determination of Gs, mitogen activated protein kinase (MAPK) and Gq/11 activation. (3) Results: The patient mutation C105Vfs114X and further designed TSH mutants diminished cyclic adenosine monophosphate (cAMP) signaling activity. Surprisingly, MAPK signaling for all mutants was comparable to WT, while none of the mutants induced PLC activation. (4) Conclusion: We characterized the patient mutation C105Vfs114X concerning different signaling pathways. We identified a strong decrease of cAMP signaling induction and speculate that this could, in combination with diverse signaling regarding the other pathways, accounting for the patient’s severe phenotype.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Thyrotropin receptor-associated diseases: from adenomata to Graves disease.

          The thyroid-stimulating hormone receptor (TSHR) is a G protein-linked, 7-transmembrane domain (7-TMD) receptor that undergoes complex posttranslational processing unique to this glycoprotein receptor family. Due to its complex structure, TSHR appears to have unstable molecular integrity and a propensity toward over- or underactivity on the basis of point genetic mutations or antibody-induced structural changes. Hence, both germline and somatic mutations, commonly located in the transmembrane regions, may induce constitutive activation of the receptor, resulting in congenital hyperthyroidism or the development of actively secreting thyroid nodules. Similarly, mutations leading to structural alterations may induce constitutive inactivation and congenital hypothyroidism. The TSHR is also a primary antigen in autoimmune thyroid disease, and some TSHR antibodies may activate the receptor, while others inhibit its activation or have no influence on signal transduction at all, depending on how they influence the integrity of the structure. Clinical assays for such antibodies have improved significantly and are a useful addition to the investigative armamentarium. Furthermore, the relative instability of the receptor can result in shedding of the TSHR ectodomain, providing a source of antigen and activating the autoimmune response. However, it may also provide decoys for TSHR antibodies, thus influencing their biological action and clinical effects. This review discusses the role of the TSHR in the physiological and pathological stimulation of the thyroid.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families.

              Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have been only partially defined. In membranes of human thyroid gland, we immunologically identified alpha subunits of the G proteins Gs short, Gs long, Gi1, Gi2, Gi3, G(o) (Go2 and another form of Go, presumably Go1), Gq, G11, G12, and G13. Activation of the thyrotropin (TSH) receptor by bovine TSH led to increased incorporation of the photoreactive GTP analogue [alpha-32P]GTP azidoanilide into immunoprecipitated alpha subunits of all G proteins detected in thyroid membranes. This effect was receptor-dependent and not due to direct G protein stimulation because it was mimicked by TSH receptor-stimulating antibodies of patients suffering from Grave disease and was abolished by a receptor-blocking antiserum from a patient with autoimmune hypothyroidism. The TSH-induced activation of individual G proteins occurred with EC50 values of 5-50 milliunits/ml, indicating that the activated TSH receptor coupled with similar potency to different G proteins. When human thyroid slices were pretreated with pertussis toxin, the TSH receptor-mediated accumulation of cAMP increased by approximately 35% with TSH at 1 milliunits/ml, indicating that the TSH receptor coupled to Gs and G(i). Taken together, these findings show that, at least in human thyroid membranes, in which the protein is expressed at its physiological levels, the TSH receptor resembles a naturally occurring example of a general G protein-activating receptor.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 November 2019
                November 2019
                : 20
                : 22
                : 5564
                Affiliations
                [1 ]Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; laura.kalveram@ 123456charite.de
                [2 ]Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; gunnar.kleinau@ 123456charite.de (G.K.); patrick.scheerer@ 123456charite.de (P.S.)
                [3 ]Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; kamila.szymanska@ 123456umlub.pl (K.S.); adolfo.rivero-muller@ 123456umlub.pl (A.R.-M.)
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-8892-1290
                https://orcid.org/0000-0001-5028-2075
                https://orcid.org/0000-0002-9794-802X
                Article
                ijms-20-05564
                10.3390/ijms20225564
                6888357
                31703413
                d9a8352b-6a9f-4c35-9fba-52ec94c37242
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 September 2019
                : 03 November 2019
                Categories
                Article

                Molecular biology
                central congenital hypothyroidism,g-protein coupled receptors,thyroid-stimulating hormone,tshr

                Comments

                Comment on this article