46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What Does Galvanic Vestibular Stimulation Actually Activate?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Luigi Galvani spent 20 years conducting experiments to demonstrate electrical conductivity of nerves and muscles before publishing his major treatise on the subject in 1791 (Galvani, 1791). His personal friend and professional nemesis Count Alessandro Volta held a respectful but opposing view, that nerve and muscle tissues simply serve as passive conductors, and he built the first “voltaic” battery in an attempt to prove his point. Ultimately it appears that they were both partially correct, and the same bioelectric potentials sought by Galvani and debunked by Volta continue to be used in present day because they are an easy, non-invasive approach to activate the vestibular nerve(s). Yet, debate continues in contemporary medicine and science regarding the exact effect of galvanic stimulation on the nervous system. Galvanic vestibular stimulation (GVS) has been used to activate fibers of the vestibular nerve in humans and experimental animals by applying 0.1–4 mA DC currents through the skin over the mastoid processes (for reviews, see Fitzpatrick and Day, 2004; Curthoys, 2009). Steps of current are used most often, causing continuous activation of the entire vestibular nerve, particularly those fibers with irregular spontaneous firing rates (Goldberg et al., 1984; Minor and Goldberg, 1991). This stimulation excites a wide range of central vestibular neurons, including those related to both the semicircular canals and the otolith organs (Wilson et al., 1979; Peterson et al., 1980; Ezure et al., 1983; Courjon et al., 1987). However, despite this non-selective activation, it appears that only otolith-related behavioral responses are induced. Human subjects experience sensations of rocking or pitching, head and/or body tilt, and have ocular torsion – all characteristics of otolith system activation (Zink et al., 1997; Watson et al., 1998; Séverac Cauquil et al., 2003; Macdougall et al., 2005; Bent et al., 2006). They do not experience sensations of rotation and do not 4display ocular nystagmus, which would occur if the semicircular canals were continuously stimulated (Mach, 1875; Cohen et al., 1965; Guedry, 1974). This apparent paradox has engendered considerable controversy: does GVS primarily or exclusively activate the otolith system, or does it activate both the otolith and semicircular canal systems equivalently? The preponderance of physiological data support the view that GVS is primarily an otolithic stimulus. A variant of GVS utilizing binaurally applied sinusoidal currents (sinusoidal GVS, sGVS) was introduced by Macefield and colleagues (Bent et al., 2006; Grewal et al., 2009; James and Macefield, 2010; James et al., 2010), and has proven to be a potent technique for inducing muscle sympathetic nerve activity (MSNA) in the legs of humans. MSNA causes peripheral vasoconstriction, which maintains adequate blood supply to the brain upon standing. This orthostatic response is clearly associated with the otolith system (Yates, 1992; Woodring et al., 1997; Kerman et al., 2003). When sGVS is applied to anesthetized rats, it can also induce sudden decreases in blood pressure and heart rate that resemble human vasovagal syncope (Cohen et al., 2011). Similar sustained drops in blood pressure have been shown in alert and anesthetized rats after linear acceleration (Zhu et al., 2007). sGVS also evokes frequency-dependent postural sway in standing subjects, further supporting the idea that the stimulus primarily activates the otolith system (Lau et al., 2003). Functional anatomical studies have also contributed to the controversy regarding the neural effect(s) of GVS. These investigations have utilized GVS to induce activation of the immediate early gene c-fos, and to visualize its protein product c-Fos, which accumulates in the nuclei of activated neurons. Steps of GVS applied unilaterally to rodents result in bilateral c-Fos expression near the ventricular wall in the medial vestibular nucleus (MVN), with muted expression in the inferior vestibular nucleus (IVN) and no c-Fos accumulation in the superior or lateral vestibular nuclei (SVN and LVN, respectively; Kaufman and Perachio, 1994; Marshburn et al., 1997; Abe et al., 2009). In this Frontiers Special Topic, Holstein and colleagues report that sGVS in rats results in c-Fos accumulation in some neurons in caudal IVN, in cells of the parasolitary nucleus, in neurons throughout MVN, and in cells located in a small medial wedge in caudal SVN. There were no activated neurons in the portions of the vestibular nuclear complex (VNC) that participate directly in the horizontal and vertical vestibulo-ocular reflexes, or the vestibulo-spinal postural reflexes. These studies reflect the same apparent contradiction evident in human physiological investigations: if GVS activates the entire vestibular nerve, why are activated neurons restricted to non-vestibulo-ocular and vestibulo-spinal regions? The most likely explanation for this discrepancy derives from a report by Courjon et al. (1987) in which a wide variety of central vestibular neurons were activated by galvanic stimulation. Units that responded to rotation promptly habituated, while those units that were non-responsive to rotation, which were presumably otolith units, continued to fire in response to GVS. We propose that this canal-specific response habituation underlies the apparent inconsistency between the global vestibular activation by GVS and the otolith-predominant neural and behavioral responses. Moreover, the c-Fos localization findings can be further interpreted in this light, since c-Fos protein is not manifest in neurons that are tonically inhibited (Chan and Sawchenko, 1994). Many vestibular neurons that participate in vestibulo-ocular and vestibulo-spinal reflexes receive formidable direct inhibition from cerebellar Purkinje cells and/or inhibitory commissural and intra-VNC fibers (for review, see Holstein, 2011). These neurons are not likely to express c-Fos protein, even though they may initially be activated by sGVS. Further still, while neurons that receive predominantly excitatory input and some cells under conditions of release from tonic inhibition show c-Fos expression in response to appropriate stimuli, other disinhibited neurons do not express c-Fos induction (for review, see Kovács, 2008), and c-Fos is rarely observed in large motor neurons of the brainstem (Chan and Sawchenko, 1994). As a result, vestibulo-ocular, vestibulo-spinal, and vestibulo-colic motor neurons present in subregions of the VNC should not be expected to accumulate c-Fos protein. On the basis of this analysis, we conclude that while sGVS does indeed activate the entire vestibular nerve, only the otolith system expresses a persistent behavioral and neural response due to the habituation of the canal-related units and the attendant inhibition of vestibular neuronal populations. It is likely that the habituation of the semicircular canal induced activity originates in the cerebellum, but this remains to be determined.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Probing the human vestibular system with galvanic stimulation.

          Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey.

            Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as response thresholds to shocks, synchronized to follow naturally occurring impulses at several different delays. Recovery in irregular units was more rapid than in regular units. Evidence is presented that externally applied currents acted at the spike trigger site rather than elsewhere in the sensory transduction process. We argue that the irregular discharge of some vestibular afferents offers no functional advantage in the encoding and transmission of sensory information. Rather, the irregularity of discharge is better viewed as a consequence of the enhanced sensitivity of these units to depolarizing influences, including afferent and efferent synaptic inputs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement of immediate-early gene activation- c-fos and beyond.

              Immediate-early genes (IEG) are powerful tools for identifying activated neurosecretory neurones and extended circuits that affect neuroendocrine functions. The generally acknowledged scenario is when cells became activated, IEGs expressed and IEG-encoded transcription factors affect target gene expression. However, there are several examples in which: (i) neuronal activation occurs without induction of IEGs; (ii) IEG induction is not related to challenge-induced neuropeptide expression; and (iii) markers of neuronal activation are not expressed in chronically activated neurones. In spite of these limitations, the use of c-Fos and other regulatory- or effector transcription factors as markers of neuronal activation will continue to be an extremely powerful technique. Recently-developed models, including transgenic mice expressing different marker genes under the regulation of IEG promoters, will help to monitor neuronal activity in vivo or ex vivo and to reveal connection between activated neurones. Furthermore, combinations between novel imaging techniques, such as magnetic resonance and IEG-based mapping strategies, will open new means with which to study functional activity in the neurosecretory systems.
                Bookmark

                Author and article information

                Journal
                Front Neurol
                Front. Neur.
                Frontiers in Neurology
                Frontiers Research Foundation
                1664-2295
                06 January 2012
                2011
                : 2
                : 90
                Affiliations
                [1] 1simpleDepartment of Neurology, Mount Sinai School of Medicine New York, NY, USA
                [2] 2simpleDepartment of Neuroscience, Mount Sinai School of Medicine New York, NY, USA
                [3] 3simpleDepartment of Anatomy/Functional Morphology, Mount Sinai School of Medicine New York, NY, USA
                Author notes

                This article was submitted to Frontiers in Neuro-otology, a specialty of Frontiers in Neurology.

                Article
                10.3389/fneur.2011.00090
                3258665
                22287951
                d9aadc61-0365-4757-8318-c6a7778a86d6
                Copyright © 2012 Cohen, Yakushin and Holstein.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 08 December 2011
                : 21 December 2011
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 32, Pages: 2, Words: 2114
                Categories
                Neuroscience
                Opinion Article

                Neurology
                Neurology

                Comments

                Comment on this article