+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere”

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Over the last decades, it has become clear that plastic pollution presents a global societal and environmental challenge given its increasing presence in the oceans. A growing literature has focused on the microbial life growing on the surfaces of these pollutants called the “plastisphere,” but the general concepts of microbial ecotoxicology have only rarely been integrated. Microbial ecotoxicology deals with (i) the impact of pollutants on microbial communities and inversely (ii) how much microbes can influence their biodegradation. The goal of this review is to enlighten the growing literature of the last 15 years on microbial ecotoxicology related to plastic pollution in the oceans. First, we focus on the impact of plastic on marine microbial life and on the various functions it ensures in the ecosystems. In this part, we also discuss the driving factors influencing biofilm development on plastic surfaces and the potential role of plastic debris as vector for dispersal of harmful pathogen species. Second, we give a critical view of the extent to which marine microorganisms can participate in the decomposition of plastic in the oceans and of the relevance of current standard tests for plastic biodegradability at sea. We highlight some examples of metabolic pathways of polymer biodegradation. We conclude with several questions regarding gaps in current knowledge of plastic biodegradation by marine microorganisms and the identification of possible directions for future research.

          Related collections

          Most cited references 145

          • Record: found
          • Abstract: found
          • Article: not found

          Marine pollution. Plastic waste inputs from land into the ocean.

          Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea

            Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world's oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N = 680) and visual survey transects of large plastic debris (N = 891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic 4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove <4.75 mm plastic particles from the ocean surface.
              • Record: found
              • Abstract: found
              • Article: not found

              Microplastics in the marine environment: a review of the methods used for identification and quantification.

              This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are "items per m(2)" for sediment and sea surface studies and "items per m(3)" for water column studies. Mesh size of sieves and filters used during sampling or sample processing influence abundance estimates. Most studies reported two main size ranges of microplastics: (i) 500 μm-5 mm, which are retained by a 500 μm sieve/net, and (ii) 1-500 μm, or fractions thereof that are retained on filters. We recommend that future programs of monitoring continue to distinguish these size fractions, but we suggest standardized sampling procedures which allow the spatiotemporal comparison of microplastic abundance across marine environments.

                Author and article information

                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                25 April 2019
                : 10
                1UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université , Banyuls-sur-Mer, France
                2Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat á I’Énergie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay , Évry, France
                3Plastic@Sea, Observatoire Océanographique de Banyuls-sur-Mer , Banyuls-sur-Mer, France
                Author notes

                Edited by: Michail M. Yakimov, Italian National Research Council (CNR), Italy

                Reviewed by: Irene Wagner-Doebler, Helmholtz Center for Infection Research (HZ), Germany; Edoardo Puglisi, University Cattolica del Sacro Cuore, Italy

                *Correspondence: Jean-François Ghiglione, ghiglione@

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Copyright © 2019 Jacquin, Cheng, Odobel, Pandin, Conan, Pujo-Pay, Barbe, Meistertzheim and Ghiglione.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 147, Pages: 16, Words: 0


                Comment on this article