40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression.

          Mutations in NOD2, a putative intracellular receptor for bacterial peptidoglycans, are associated with a subset of Crohn's disease but the molecular mechanism linking this protein with the disease pathogenesis remains unclear. Human alpha defensins (HD-5 and HD-6) are antibiotic effector molecules predominantly expressed in Paneth cells of the ileum. Paneth cells also express NOD2. To address the hypothesis that the function of NOD2 may affect expression of Paneth cell defensins, we compared their expression levels with respect to NOD2 mutations in Crohn's disease. Forty five Crohn's disease patients (24 with NOD2 mutations, 21 with wild-type NOD2) and 12 controls were studied. Real time reverse transcription-polymerase chain reaction was performed with mucosal mRNA for HD-5, HD-6, lysozyme, secretory phospholipase A2 (sPLA2), tumour necrosis factor alpha, interleukin 8, and human hypoxanthine phosphoribosyltransferase (housekeeping gene). Immunohistochemistry with anti-HD-5 and histological Paneth cell staining were performed in 10 patients with NOD2 mutations or wild-type genotypes. Ileal expression of HD-5 and HD-6, but not sPLA2 or lysozyme, were diminished in affected ileum, and the decrease was significantly more pronounced in patients with NOD2 mutations. In the colon, HD-5, HD-6, and sPLA2 were increased during inflammation in wild-type but not in NOD2 mutated patients. In both the colon and ileum, proinflammatory cytokines and lysozyme were unaffected by NOD2 status. Immunohistochemistry identified Paneth cells as the sole source of HD-5. As alpha defensins are important in the mucosal antibacterial barrier, their diminished expression may explain, in part, the bacterial induced mucosal inflammation and ileal involvement of Crohn's disease, especially in the case of NOD2 mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines.

            l-Glutamate is one of the most abundant amino acids in alimentary proteins, but its concentration in blood is among the lowest. This is largely because l-glutamate is extensively oxidized in small intestine epithelial cells during its transcellular journey from the lumen to the bloodstream and after its uptake from the bloodstream. This oxidative capacity coincides with a high energy demand of the epithelium, which is in rapid renewal and responsible for the nutrient absorption process. l-Glutamate is a precursor for glutathione and N-acetylglutamate in enterocytes. Glutathione is involved in the enterocyte redox state and in the detoxication process. N-acetylglutamate is an activator of carbamoylphosphate synthetase 1, which is implicated in l-citrulline production by enterocytes. Furthermore, l-glutamate is a precursor in enterocytes for several other amino acids, including l-alanine, l-aspartate, l-ornithine, and l-proline. Thus, l-glutamate can serve both locally inside enterocytes and through the production of other amino acids in an interorgan metabolic perspective. Intestinal epithelial cell capacity to oxidize l-glutamine and l-glutamate is already high in piglets at birth and during the suckling period. In colonocytes, l-glutamate also serves as a fuel but is provided from the bloodstream. Alimentary and endogenous proteins that escape digestion enter the large intestine and are broken down by colonic bacterial flora, which then release l-glutamate into the lumen. l-Glutamate can then serve in the colon lumen as a precursor for butyrate and acetate in bacteria. l-Glutamate, in addition to fiber and digestion-resistant starch, can thus serve as a luminally derived fuel precursor for colonocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology.

              Mammalian members of the SLC15 family are electrogenic transporters that utilize the proton-motive force for uphill transport of short chain peptides and peptido-mimetics into a variety of cells. The prototype transporters of this family are PEPT1 (SLC15A1) and PEPT2 (SLC15A2), which mediate the uptake of peptide substrates into intestinal and renal epithelial cells. More recently, other sites of functional expression of the two proteins have been identified such as bile duct epithelium (PEPT1), glia cells and epithelia of the choroid plexus, lung and mammary gland (PEPT2). Both proteins can transport essentially every possible di- and tripeptide regardless of the substrate's net charge, but operate stereoselectively. Based on peptide-like structures, various drugs and prodrugs are transported as well, allowing efficient intestinal absorption of the compounds via PEPT1. In kidney tubules both peptide transporters can mediate the renal reabsorption of the filtered compounds thus affecting their pharmacokinetics. Recently, two new peptide transporters, PHT1 (SLC15A4) and PHT2 (SLC15A3), were identified in mammals. They possess an overall amino acid identity with the PEPT-series of 20% to 25%. PHT1 and PHT2 were shown to transport free histidine and certain di- and tripeptides, but it is not yet clear whether they are located on the plasma membrane or represent lysosomal transporters for the proton-dependent export of histidine and dipeptides from lysosomal protein degradation into the cytosol.
                Bookmark

                Author and article information

                Journal
                Amino Acids
                Amino Acids
                Springer Nature
                0939-4451
                1438-2199
                April 2015
                December 23 2014
                : 47
                : 4
                : 693-705
                Article
                10.1007/s00726-014-1889-6
                25534429
                d9c2fa3e-c930-4170-a3a0-29043877cf35
                © 2014
                History

                Comments

                Comment on this article