24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Non-viral COVID-19 vaccine delivery systems

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The novel corona virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe at a formidable speed, causing tens of millions of cases and more than one million deaths in less than a year of its report in December 2019. Since then, companies and research institutions have raced to develop SARS-CoV-2 vaccines, ranging from conventional viral and protein-based vaccines to those that are more cutting edge, including DNA- and mRNA-based vaccines. Each vaccine exhibits a different potency and duration of efficacy, as determined by the antigen design, adjuvant molecules, vaccine delivery platforms, and immunization method. In this review, we will introduce a few of the leading non-viral vaccines that are under clinical stage development and discuss delivery strategies to improve vaccine efficacy, duration of protection, safety, and mass vaccination.

          Graphical abstract

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

          Summary The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus

            The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002 to 2003. Our decade-long structural studies on the receptor recognition by SARS-CoV have identified key interactions between SARS-CoV spike protein and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to build an atomic-level iterative framework of virus-receptor interactions to facilitate epidemic surveillance, predict species-specific receptor usage, and identify potential animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike protein, we apply this predictive framework to provide novel insights into the receptor usage and likely host range of 2019-nCoV. This study provides a robust test of this reiterative framework, providing the basic, translational, and public health research communities with predictive insights that may help study and battle this novel 2019-nCoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An mRNA Vaccine against SARS-CoV-2 — Preliminary Report

              Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. Methods We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 μg, 100 μg, or 250 μg. There were 15 participants in each dose group. Results After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti–S-2P antibody geometric mean titer [GMT], 40,227 in the 25-μg group, 109,209 in the 100-μg group, and 213,526 in the 250-μg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-μg dose group reported one or more severe adverse events. Conclusions The mRNA-1273 vaccine induced anti–SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 ClinicalTrials.gov number, NCT04283461).
                Bookmark

                Author and article information

                Journal
                Adv Drug Deliv Rev
                Adv Drug Deliv Rev
                Advanced Drug Delivery Reviews
                Elsevier B.V.
                0169-409X
                1872-8294
                17 December 2020
                17 December 2020
                Affiliations
                [a ]Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
                [b ]Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
                [c ]Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
                Author notes
                [* ]Corresponding author at: Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
                [1]

                Authors contributed equally.

                Article
                S0169-409X(20)30279-9
                10.1016/j.addr.2020.12.008
                7744276
                33340620
                d9d0bbb1-0933-4e39-ba84-155b29bcd511
                © 2020 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 10 October 2020
                : 20 November 2020
                : 13 December 2020
                Categories
                Article

                Comments

                Comment on this article