620
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time-dependent changes in hypoxia- and gliosis-related factors in experimental diabetic retinopathy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes causes various biochemical changes in the retina; long-term changes in the factors associated with hypoxia and gliosis have rarely been reported. The present study was conducted to explore the changes in these factors in a time-dependent manner in experimental diabetic retinopathy (DR). Diabetes was induced in Sprague–Dawley rats by intraperitoneal injection of streptozotocin. The expression of the following factors was examined using immunofluorescence and western blot analysis at 0.5, 1, 2, 4 and 6 months after diabetes onset: hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), erythropoietin (EPO), erythropoietin receptor (EPOR), glial fibrillary acidic protein (GFAP), vimentin, glutamate-aspartate transporter (GLAST) and glutamine synthase (GS). The expression of factors such as HIF-1alpha, VEGF, EPO, EPOR, GFAP and vimentin, was up-regulated with the progression of diabetes in the diabetic rat retinas compared to the expression in normal control retinas, whereas the expression of GS and GLAST was down-regulated. Changes in EPO and EPOR appeared 2 weeks after diabetes onset. HIF-1alpha, VEGF and GFAP started to increase at 1 month and vimentin at 4 months after diabetes onset. GS and GLAST started to decrease at 1 month after diabetes onset. The expression of these factors, which are involved in the processes of hypoxia and gliosis, varied at different stages of DR. The time-course change may be helpful in the evaluation of the progression of DR, and it may indicate the optimal intervention time points for DR.

          Related collections

          Most cited references 63

          • Record: found
          • Abstract: not found
          • Article: not found

          Diabetic retinopathy.

           Daniel Frank (2004)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic retinopathy: seeing beyond glucose-induced microvascular disease.

            Diabetic retinopathy remains a frightening prospect to patients and frustrates physicians. Destruction of damaged retina by photocoagulation remains the primary treatment nearly 50 years after its introduction. The diabetes pandemic requires new approaches to understand the pathophysiology and improve the detection, prevention, and treatment of retinopathy. This perspective considers how the unique anatomy and physiology of the retina may predispose it to the metabolic stresses of diabetes. The roles of neural retinal alterations and impaired retinal insulin action in the pathogenesis of early retinopathy and the mechanisms of vision loss are emphasized. Potential means to overcome limitations of current animal models and diagnostic testing are also presented with the goal of accelerating therapies to manage retinopathy in the face of ongoing diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glial reactivity, an early feature of diabetic retinopathy.

              To characterize early structural gliotic reactions in retinal Müller cells, astrocytes, and microglia in experimentally induced diabetes. Rats were rendered diabetic by streptozotocin injection and killed after 2, 4, 12, or 20 weeks. Cell densities were determined in flatmounted retinas or transverse semithin sections. Expression of glial fibrillary acidic protein (GFAP) was localized on frozen sections or flatmounts by immunofluorescence and confocal microscopy, and GFAP content was evaluated by Western blot analysis. Microglial cells were visualized by binding of isolectin B4 or staining with antibodies to phosphotyrosine residues. The integrity of the blood-retinal barrier was assessed by intravenous injection of Evans blue. The density of Müller cells and microglia was significantly increased at 4 weeks of diabetes compared with nondiabetic controls. GFAP expression in Müller cells was not detected at 4 weeks but was prominent at 12 weeks. The number of astrocytes was significantly reduced at 4 weeks in the peripapillary and far peripheral retina. Shape changes of microglial cells indicated functional activation. Leakage of the blood-retinal barrier was observed at 2 weeks of hyperglycemia, the earliest time point investigated. The leakage of the blood-retinal barrier before glial reactivity suggests that glia are early targets of vascular hyperpermeability. The individual glial cell types react differentially to the diabetic state. Müller cells undergo hyperplasia preceding GFAP expression, and microglial cells are activated, whereas astrocytes regress. This glial behavior may contribute decisively to the onset and development of neuropathy in the diabetic retina.
                Bookmark

                Author and article information

                Contributors
                +86-21-6838-5574 , jingfazhang@tongji.edu.cn
                Journal
                Eye (Lond)
                Eye (Lond)
                Eye
                Nature Publishing Group UK (London )
                0950-222X
                1476-5454
                6 November 2018
                6 November 2018
                April 2019
                : 33
                : 4
                : 600-609
                Affiliations
                [1 ]GRID grid.414375.0, Department of Ophthalmology, , Third Affiliated Hospital of Second Military Medical University, ; Shanghai, China
                [2 ]ISNI 0000000123704535, GRID grid.24516.34, Department of Ophthalmology of Shanghai Tenth People’s Hospital, , Tongji Eye Institute, Tongji University School of Medicine, ; Shanghai, China
                [3 ]GRID grid.452253.7, Department of Ophthalmology, , Children’s Hospital of Soochow University, ; Suzhou, China
                [4 ]Shanghai Peace Eye Hospital, Shanghai, China
                [5 ]ISNI 0000 0004 0368 8293, GRID grid.16821.3c, Department of Ophthalmology, Renji Hospital, , Shanghai Jiaotong University School of Medicine, ; Shanghai, China
                Article
                268
                10.1038/s41433-018-0268-z
                6461831
                30401898
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Royal College of Ophthalmologists 2019

                Vision sciences

                Comments

                Comment on this article