8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Probing the formation of the seeds of supermassive black holes with gravitational waves

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The existence of black holes in the intermediate mass interval between one hundred and ten thousand solar masses, filling the gap between the stellar and the supermassive black holes is a key prediction to explain the origin of luminous QSOs at redshifts as large as seven. There is a sheer difficulty in forming giant black holes of billion suns in less than one billion years. This has led to the concept of seed black holes. They are high redshift intermediate mass black holes that formed during cosmic dawn. Seeds are a transient population, which later grew massive through episodes of accretion and mergers. In this chapter we explore the possibility of discovering seed black holes and track their growth across all cosmic epoch, by detecting the gravitational wave signal they emit at the time of their coalescence, when they pair to form close binaries. We show that the ESA LISA mission for the detection of low frequency gravitational waves will be paramount in granting this insight. Gravitational waves travel unimpeded through the cosmos and carry exquisite information on the masses and spins of the merging black holes. To this purpose we introduce key concepts on the gravitational wave emission from binaries, describing briefly their formation pathway during halo mergers and galaxy collisions.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30

            So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

              We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are \(31.2^{+8.4}_{-6.0}\,M_\odot\) and \(19.4^{+5.3}_{-5.9}\,M_\odot\) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, \(\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.\) This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is \(880^{+450}_{-390}~\mathrm{Mpc}\) corresponding to a redshift of \(z = 0.18^{+0.08}_{-0.07}\). We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to \(m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2\). In all cases, we find that GW170104 is consistent with general relativity.
                Bookmark

                Author and article information

                Journal
                17 July 2018
                Article
                1807.06967
                d9e6cc3c-5118-4916-a8f9-683713608d98

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Preprint of a review volume chapter to be published in Latiff, M., and Schleicher, D. entitled Probing the formation of the seeds of supermassive black holes with gravitational waves. Volume title: Formation of the First Black Holes, 2018. Copyright World Scientific Publishing Company - link - https://www.worldscientific.com/worldscibooks/10.1142/10652
                astro-ph.HE astro-ph.GA

                Galaxy astrophysics,High energy astrophysical phenomena
                Galaxy astrophysics, High energy astrophysical phenomena

                Comments

                Comment on this article