33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ 70A)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

          Author Summary

          Biological nitrogen fixation plays an essential role in the nitrogen cycle, sustaining agricultural productivity by providing a source of fixed nitrogen for plants and ultimately animals. The enzyme nitrogenase that catalyses the reduction of atmospheric dinitrogen to ammonia contains one of the most complex heterometal cofactors found in biology. Biosynthesis of nitrogenase and provision of support for its activity requires a large number of nitrogen fixation ( nif) genes, which vary according to the physiological lifestyle of the host organism. In this study, we identified a nif cluster with reduced genetic complexity, consisting of nine genes organized as a single operon in the genome of Paenibacillus sp. WLY78. When transferred to Escherichia coli, the Paenibacllus nif cluster enables synthesis of catalytically active nitrogenase, which is competent to reduce both acetylene and dinitrogen as substrates of the enzyme. Environmental regulation of nif gene expression in Paenibacillus, in response to either oxygen or fixed nitrogen, is circumvented when the nif operon is expressed from its native promoter in E. coli, suggesting that nif transcription in Paenibacillus is negatively regulated in response to these effectors.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?

          Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen (N(2)) in symbiosis with legumes. All rhizobia elicit the formation of root - or occasionally stem - nodules, plant organs dedicated to the fixation and assimilation of nitrogen. Bacterial colonization of these nodules culminates in a remarkable case of sustained intracellular infection in plants. Rhizobial phylogenetic diversity raised the question of whether these soil bacteria shared a common core of symbiotic genes. In this article, we review the cumulative evidence from recent genomic and genetic analyses pointing toward an unexpected variety of mechanisms that lead to symbiosis with legumes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosynthesis of the iron-molybdenum cofactor of nitrogenase.

            The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Simple, High-Precision, High-Sensitivity Tracer Assay for N(inf2) Fixation.

              We describe a simple, precise, and sensitive experimental protocol for direct measurement of N(inf2) fixation using the conversion of (sup15)N(inf2) to organic N. Our protocol greatly reduces the limit of detection for N(inf2) fixation by taking advantage of the high sensitivity of a modern, multiple-collector isotope ratio mass spectrometer. This instrument allowed measurement of N(inf2) fixation by natural assemblages of plankton in incubations lasting several hours in the presence of relatively low-level (ca. 10 atom%) tracer additions of (sup15)N(inf2) to the ambient pool of N(inf2). The sensitivity and precision of this tracer method are comparable to or better than those associated with the C(inf2)H(inf2) reduction assay. Data obtained in a series of experiments in the Gotland Basin of the Baltic Sea showed excellent agreement between (sup15)N(inf2) tracer and C(inf2)H(inf2) reduction measurements, with the largest discrepancies between the methods occurring at very low fixation rates. The ratio of C(inf2)H(inf2) reduced to N(inf2) fixed was 4.68 (plusmn) 0.11 (mean (plusmn) standard error, n = 39). In these experiments, the rate of C(inf2)H(inf2) reduction was relatively insensitive to assay volume. Our results, the first for planktonic diazotroph populations of the Baltic, confirm the validity of the C(inf2)H(inf2) reduction method as a quantitative measure of N(inf2) fixation in this system. Our (sup15)N(inf2) protocols are comparable to standard C(inf2)H(inf2) reduction procedures, which should promote use of direct (sup15)N(inf2) fixation measurements in other systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2013
                October 2013
                17 October 2013
                : 9
                : 10
                : e1003865
                Affiliations
                [1 ]State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, P. R. China
                [2 ]College of Life Science, Shanxi Normal University, Linfen, P. R. China
                [3 ]Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [4 ]Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
                Universidad de Sevilla, Spain
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SC RD. Performed the experiments: LW LZ ZL JX XL BZ YH PL. Analyzed the data: SC RD DZ JL. Wrote the paper: SC RD. Designed the figures: PL.

                Article
                PGENETICS-D-13-01150
                10.1371/journal.pgen.1003865
                3798268
                24146630
                d9ef7a8c-0d96-4f23-9379-81a69999163f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 May 2013
                : 21 August 2013
                Page count
                Pages: 11
                Funding
                This work was supported by funds from the national “973” Project (Grant No. 001CB108904) and the National Nature Science Foundation of China (Grant No. 31270129). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article