37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Common seafood pollutants inhibit a crucial cellular defense protein.

          Abstract

          The world’s oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants. We identified specific congeners of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers that inhibit mouse and human P-gp, and determined their environmental levels in yellowfin tuna from the Gulf of Mexico. In addition, we solved the cocrystal structure of P-gp bound to one of these inhibitory pollutants, PBDE (polybrominated diphenyl ether)–100, providing the first view of pollutant binding to a drug transporter. The results demonstrate the potential for specific binding and inhibition of mammalian P-gp by ubiquitous congeners of persistent organic pollutants present in fish and other foods, and argue for further consideration of transporter inhibition in the assessment of the risk of exposure to these chemicals.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Green chemistry: principles and practice.

          Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green Chemistry has a framework of a cohesive set of Twelve Principles, which have been systematically surveyed in this critical review. This article covers the concepts of design and the scientific philosophy of Green Chemistry with a set of illustrative examples. Future trends in Green Chemistry are discussed with the challenge of using the Principles as a cohesive design system (93 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane transporters in drug development.

            Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds.

              An expression system for Saccharomyces cerevisiae (Sc) has been developed which, depending on the chosen vector, allows the constitutive expression of proteins at different levels over a range of three orders of magnitude and in different genetic backgrounds. The expression system is comprised of cassettes composed of a weak CYC1 promoter, the ADH promoter or the stronger TEF and GPD promoters, flanked by a cloning array and the CYC1 terminator. The multiple cloning array based on pBIISK (Stratagene) provides six to nine unique restriction sites, which facilitates the cloning of genes and allows for the directed cloning of cDNAs by the widely used ZAP system (Stratagene). Expression cassettes were placed into both the centromeric and 2 mu plasmids of the pRS series [Sikorski and Hieter, Genetics 122 (1989) 19-27; Christianson et al., Gene 110 (1992) 119-122] containing HIS3, TRP1, LEU2 or URA3 markers. The 32 expression vectors created by this strategy provide a powerful tool for the convenient cloning and the controlled expression of genes or cDNAs in nearly every genetic background of the currently used Sc strains.
                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                April 2016
                15 April 2016
                : 2
                : 4
                : e1600001
                Affiliations
                [1 ]Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093–0202, USA.
                [2 ]Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093–0657, USA.
                [3 ]Sekisui XenoTech, LLC, 1101 West Cambridge Circle Drive, Kansas City, KS 66103, USA.
                [4 ]Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093–0657, USA.
                Author notes
                [*]

                These authors contributed equally to this work.

                []Corresponding author. E-mail: hamdoun@ 123456ucsd.edu
                Author information
                http://orcid.org/0000-0003-3120-6485
                http://orcid.org/0000-0002-1872-8425
                Article
                1600001
                10.1126/sciadv.1600001
                4846432
                27152359
                da001c4f-b8dc-4095-a759-8e2ff776a473
                Copyright © 2016, The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 01 January 2016
                : 21 March 2016
                Categories
                Research Article
                Research Articles
                SciAdv r-articles
                Marine Pollutants
                Custom metadata
                Abel Antonioc Belen

                Comments

                Comment on this article