8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells : ENDMT INDUCED BY ALTERED ECM

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d3361889e83">Alterations in shear stress, mechanical deformation, extracellular matrix (ECM) composition and exposure to inflammatory conditions are known to cause endothelial to mesenchymal transformation (EndMT). This change in endothelial phenotype has only recently been linked to adult pathologies such as cancer progression, organ fibrosis, and calcific aortic valve disease; and its function in adult physiology, especially in response to tissue mechanics, has not been rigorously investigated. EndMT is a response to mechanical and biochemical signals that results in the remodeling of underlying tissues. In diseased aortic valves, glycosaminoglycans (GAGs) are present in the collagen-rich valve fibrosa, and are deposited near calcified nodules. In this study, in vitro models of early and late-stage valve disease were developed by incorporating the GAGs chondroitin sulfate (CS), hyaluronic acid, and dermatan sulfate into 3D collagen hydrogels with or without exposure to TGF-β1 to simulate EndMT in response to microenvironmental changes. High levels of CS induced the highest rate of EndMT and led to the most collagen I and GAG production by mesenchymally transformed cells, which indicates a cell phenotype most likely to promote fibrotic disease. Mesenchymal transformation due to altered ECM was found to depend on cell-ECM bond strength and extracellular signal-regulated protein kinases 1/2 signaling. Determining the environmental conditions that induce and promote EndMT, and the subsequent behavior of mesenchymally transformed cells, will advance understanding on the role of endothelial cells in tissue regeneration or disease progression. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2729-2741, 2017. </p>

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer

          The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA.

            Erk1/Erk2 MAP kinases are key regulators of cell behaviour and their activation is generally associated with tyrosine kinase signalling. However, TGF-beta stimulation also activates Erk MAP kinases through an undefined mechanism, albeit to a much lower level than receptor tyrosine kinase stimulation. We report that upon TGF-beta stimulation, the activated TGF-beta type I receptor (TbetaRI) recruits and directly phosphorylates ShcA proteins on tyrosine and serine. This dual phosphorylation results from an intrinsic TbetaRI tyrosine kinase activity that complements its well-defined serine-threonine kinase function. TGF-beta-induced ShcA phosphorylation induces ShcA association with Grb2 and Sos, thereby initiating the well-characterised pathway linking receptor tyrosine kinases with Erk MAP kinases. We also found that TbetaRI is tyrosine phosphorylated in response to TGF-beta. Thus, TbetaRI, like the TGF-beta type II receptor, is a dual-specificity kinase. Recruitment of tyrosine kinase signalling pathways may account for aspects of TGF-beta biology that are independent of Smad signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies.

              Nonrheumatic stenosis of trileaflet aortic valves, often termed senile or calcific valvular aortic stenosis, is considered a "degenerative" process, but little is known about the cellular or molecular factors that mediate its development. To characterize the developing aortic valvular lesion, we performed histological and immunohistochemical studies on Formalin-fixed and methanol-Carnoy's-fixed paraffin-embedded aortic valve leaflets or on frozen sections obtained at autopsy from 27 adults (age, 46 to 82 years) with normal leaflets (n = 6), mild macroscopic leaflet thickening (n = 15), or clinical aortic stenosis (n = 6). Focal areas of thickening ("early lesions") were characterized by (1) subendothelial thickening on the aortic side of the leaflet, between the basement membrane (PAS-positive) and elastic lamina (Verhoeff-van Gieson), (2) the presence of large amounts of intracellular and extracellular neutral lipids (oil red O) and fine, stippled mineralization (von Kossa), and (3) disruption of the basement membrane overlying the lesion. Regions of the fibrosa adjacent to these lesions were characterized by thickening and by protein, lipid, and calcium accumulation. Control valves showed none of these abnormalities. Immunohistochemical studies were performed using monoclonal antibodies directed against macrophages (anti-CD68 or HAM-56), and contractile proteins of smooth muscle cells or myofibroblasts (anti-alpha-actin and HHF-35) or rabbit polyclonal antiserum against T lymphocytes (anti-CD3). In normal valves, scattered macrophages were present in the fibrosa and ventricularis, and occasional muscle actin-positive cells were detected in the proximal portion of the ventricularis near the leaflet base, but no T lymphocytes were found. In contrast, early lesions were characterized by the presence of an inflammatory infiltrate composed of non-foam cell and foam cell macrophages, occasional T cells, and rare alpha-actin-positive cells. In stenotic aortic valves, a similar but more advanced lesion was seen. The early lesion of "degenerative" aortic stenosis is an active inflammatory process with some similarities (lipid deposition, macrophage and T-cell infiltration, and basement membrane disruption) and some dissimilarities (presence of prominent mineralization and small numbers of smooth muscle cells) to atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Journal of Biomedical Materials Research Part A
                J. Biomed. Mater. Res.
                Wiley
                15493296
                October 2017
                October 2017
                June 27 2017
                : 105
                : 10
                : 2729-2741
                Affiliations
                [1 ]Department of Biomedical Engineering; Binghamton University; Binghamton New York USA
                [2 ]Department of Mechanical Engineering; Binghamton University; Binghamton New York USA
                Article
                10.1002/jbm.a.36133
                28589644
                da024df2-d044-487c-b69d-12705733f459
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article