8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular dynamics simulation of reversible electroporation with Martini force field

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          After the discovery of membrane-reversible electroporation decades ago, the procedure has been used extensively in biology, biotechnology and medicine. The research on the basic mechanism has increasingly attracted attention. Although most research has focused on models that consider all atomic and molecular interactions and much atomic-level information can be obtained, the huge computational demand limits the models to simulations of only a few nanometers on the spatial scale and a few nanoseconds on the time scale. In order to more comprehensively study the reversible electroporation mechanism of phospholipid membrane on the nanoscale and at longer time intervals of up to 100 ns, we developed a dipalmitoylphosphatidylcholine (DPPC) phospholipid membrane model with the coarse-grained Martini force field. The model was tested by separately examining the morphology of the phospholipid membrane, the hydrophilic channel size, the distribution of the voltage potential on both sides of the membrane, and the movement of water molecules and ions during electroporation.

          Results

          The results showed that the process went through several stages: (1) the formation of the pore with defects originating on the surface. (2) The maintenance of the pore. The defects expanded to large pores and the size remains unchanged for several nanoseconds. (3) Pore healing stage due to self-assembly. Phospholipid membrane shrunk and the pore size decreased until completely closed. The pores were not circular in cross-section for most of the time and the potential difference across the membrane decreased dramatically after the pores formed, with almost no restoration of membrane integrity even when the pores started to close.

          Conclusions

          The mechanism of the reversible electroporation process on the nanoscale level, including defects, expansion, stability, and pore closing stages on a longer time scale of up to 100 ns was demonstrated more comprehensively with the coarse-grained Martini force field, which took both the necessary molecular information and the calculation efficiency into account.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          Theory of electroporation: A review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electroporation: a general phenomenon for manipulating cells and tissues.

            Electroporation is a fascinating cell membrane phenomenon with several existing biological applications and others likely. Although DNA introduction is the most common use, electroporation of isolated cells has also been used for: (1) introduction of enzymes, antibodies, and other biochemical reagents for intracellular assays; (2) selective biochemical loading of one size cell in the presence of many smaller cells; (3) introduction of virus and other particles; (4) cell killing under nontoxic conditions; and (5) insertion of membrane macromolecules into the cell membrane. More recently, tissue electroporation has begun to be explored, with potential applications including: (1) enhanced cancer tumor chemotherapy, (2) gene therapy, (3) transdermal drug delivery, and (4) noninvasive sampling for biochemical measurement. As presently understood, electroporation is an essentially universal membrane phenomenon that occurs in cell and artificial planar bilayer membranes. For short pulses (microsecond to ms), electroporation occurs if the transmembrane voltage, U(t), reaches 0.5-1.5 V. In the case of isolated cells, the pulse magnitude is 10(3)-10(4) V/cm. These pulses cause reversible electrical breakdown (REB), accompanied by a tremendous increase molecular transport across the membrane. REB results in a rapid membrane discharge, with the elevated U(t) returning to low values within a few microseconds of the pulse. However, membrane recovery can be orders of magnitude slower. An associated cell stress commonly occurs, probably because of chemical influxes and effluxes leading to chemical imbalances, which also contribute to eventual survival or death. Basic phenomena, present understanding of mechanism, and the existing and potential applications are briefly reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy.

              Cells can be transiently permeabilized by exposing them briefly to an intense electric field (a process called "electroporation"), but it is not clear what structural changes the electric field induces in the cell membrane. To determine whether membrane pores are actually created in the electropermeabilized cells, rapid-freezing electron microscopy was used to examine human red blood cells which were exposed to a radio-frequency electric field. Volcano-shaped membrane openings appeared in the freeze-fracture faces of electropermeabilized cell membranes at intervals as short as 3 ms after the electrical pulse. We suggest that these openings represent the membrane pathways which allow entry of macromolecules (such as DNA) during electroporation. The pore structures rapidly expand to 20-120 nm in diameter during the first 20 ms of electroporation, and after several seconds begin to shrink and reseal. The distribution of pore sizes and pore dynamics suggests that interactions between the membrane and the submembrane cytoskeleton may have an important role in the formation and resealing of pores.
                Bookmark

                Author and article information

                Contributors
                chengzhou16@fudan.edu.cn
                kfliu@fudan.edu.cn
                Journal
                Biomed Eng Online
                Biomed Eng Online
                BioMedical Engineering OnLine
                BioMed Central (London )
                1475-925X
                26 December 2019
                26 December 2019
                2019
                : 18
                : 123
                Affiliations
                ISNI 0000 0001 0125 2443, GRID grid.8547.e, Department of Light Sources & Illuminating Engineering, , Fudan University, ; 220 Handan Road, Yangpu District, Shanghai, 200433 China
                Article
                743
                10.1186/s12938-019-0743-1
                6933919
                31878975
                da0365bf-fb05-4d33-bd50-31359110feb8
                © The Author(s) 2019

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 March 2019
                : 12 December 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 51877046
                Award Recipient :
                Funded by: Jihua Laboratory Projects of Guangdong Province
                Award ID: 18002U100
                Award Recipient :
                Funded by: Pioneering Project of Academy for Engineering and Technology of Fudan University
                Award ID: gyy2018-002
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Biomedical engineering
                molecular dynamics simulation,martini force field,reversible electroporation,phospholipid membrane

                Comments

                Comment on this article