22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Five facts about Giardia lamblia

      review-article
      , , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fact 1: Infection with Giardia lamblia is one of the most common causes of waterborne nonbacterial and nonviral diarrheal disease G. lamblia (syn. intestinalis, duodenalis) is a zoonotic enteroparasite. It proliferates in an extracellular and noninvasive fashion in the small intestine of vertebrate hosts, causing the diarrheal disease known as giardiasis. Virtually all mammals can be infected with G. lamblia, and epidemiological data point to giardiasis as a zoonosis [1]. Infections in humans may be asymptomatic or associated with diarrhea, malabsorption, bloating, abdominal pain, fatigue, and weight loss. Based on the latest figures provided by WHO, G. lamblia is the third most common agent of diarrheal disease worldwide with over 300 million reported cases per annum, preceded only by rotavirus and Cryptosporidium parvum and hominis in the most vulnerable target group of children under five years of age [2]. The prevalence of giardiasis in humans ranges from 2%–3% in industrialized countries, up to 30% in low-income and developing countries [3]. Giardiasis was formerly included in the WHO neglected diseases initiative and is directly associated with poverty and poor quality of drinking water [4]. Acute infection develops over a period of three weeks, peaking at eight days post infection. Generally, healthy hosts clear the infection within 2–3 weeks, whereas the occasional chronically infected host shows signs of villus and crypt atrophy, enterocyte apoptosis, and ultimately severe disruption of epithelial barrier function [5]. Infection with G. lamblia has also been linked to the development of irritable bowel syndrome and chronic fatigue [6]. Fact 2: G. lamblia presents a simplified subcellular organization but is not a primitive eukaryote To date, four types of endomembrane compartments have been identified in the Giardia trophozoite, namely: the endoplasmic reticulum (ER), the nuclei, terminally-differentiated mitochondrial remnants named mitosomes, and peripheral vacuoles (PVs) [7]. Encystation-specific vesicles (ESVs) constitute a fifth compartment present only in encysting cells. Extreme genomic divergence has led to frequent artefacts such as long-branch attraction in earlier phylogenetic studies [8]. Combined with observations of elements of prokaryotic metabolism and the absence of bona fide eukaryotic organelles such as the Golgi apparatus, endosomes, and mitochondria, this resulted in a misclassification of G. lamblia as a primitive eukaryote and a concomitant misinterpretation of its evolutionary history [9]. However, molecular paleontology approaches aimed at identifying machinery present in the last eukaryotic common ancestor (LECA) indicated that this organism likely possessed all extant eukaryotic organelles and corresponding trafficking pathways. This supports the notion that species with a simplified cellular organization such as the ancestor of G. lamblia evolved via a reduction of complexity, likely linked to adoption of a parasitic lifestyle, and that G. lamblia is therefore most likely not a primary primitive eukaryote but secondarily reduced. Interestingly, recent efforts aimed at rooting the eukaryotic tree place this root between the Excavata supergroup, to which G. lamblia belongs, and all other eukaryotes [10]. Fact 3: G. lamblia feeds using specialized organelles called PVs Due to streamlining of most anabolic pathways, G. lamblia cells are highly dependent on nutrient uptake from the host’s gut by means of an array of organelles, i.e., PVs (Fig 1A). This active host–pathogen interface is at the crossroads of both endo- and exocytic trafficking in G. lamblia trophozoites (Fig 1B). The main function of PVs is to periodically endocytose fluid-phase extracellular material and to expel harmful or unusable substances into the environment again. This is in contrast to the unidirectional endocytic uptake of fluid-phase material via cytostome-like structures in many protozoa as well as in Spironucleus spp., the closest known relatives of Giardia [11]. PVs effectively act as “safety-lock" compartments for efficient environmental sampling, i.e., the uptake and intracellular sorting of gut content. The “kiss and flush” working model (Fig 1C) developed in our group is based on experimental data suggesting that PV membranes and the plasma membrane (PM) transiently fuse (the “kiss” phase) and become continuous, thereby generating an opening to the extracellular space allowing exchange of fluid-phase material between the PV lumen and the environment [12]. This PV–PM connection is then resolved, and sorting of usable nutrients occurs within the acidifying PV lumen. Any material that is not retained would then be released back into the extracellular space in a new round of PV–PM connection (the “flush” phase). The flushing of the PV lumen makes exchange of fluid-phase material bidirectional and likely compensates for the lack of bona fide lysosomes as endpoints of endocytic transport. Endocytosis through PVs is likely the main route of nutrient uptake into the Giardia cell, although there are isolated reports on receptor-mediated uptake of lipid particles. The giardial putative low-density lipoprotein (LDL) receptor (GILRP; purple ribbon in Fig 1C) in G. lamblia was shown to interact with AP2 components [13], although its exact trafficking mechanism remains uncharacterized (Fig 1C). Short actin filaments were also shown to be involved in LDL uptake and were localized in close proximity to PVs [14]. 10.1371/journal.ppat.1007250.g001 Fig 1 A working model for fluid-phase and receptor-mediated nutrient uptake through the PVs of G. lamblia. (A) A TEM image of a PV making contact with a PM-derived invagination (white star). (B) Connections between PVs and ER membranes (white star) are frequently detected in TEM tomograms. (C) The “kiss and flush” working model for fluid-phase and receptor-mediated endocytosis in PVs is based on previously published data [12,13,14,27] and is represented as a continuum of nutrient entry, retention, release, and transfer. (1) Acidifying PVs contain fluid-phase cargo, which is either free or retained by PV-resident receptors (blue ribbons). Released cargo travels further to the lumen of connecting ER tubules. Some cargoes (green pentagon) can be excluded from further passage to the ER. (2) Uptake is mediated by fusion between the VSP-coated PM and the PV membrane through PM-derived invaginations surrounded by clathrin arrays associated to AP2 complexes. This event corresponds to the “kiss” phase in which formation of a channel allows exchange of fluid-phase material between the PV lumen and the extracellular space. Usable nutrients may move freely or be bound by receptors lining the organelle lumen, whereas useless or harmful molecules may be released back in the extracellular space during the “flush” phase. LDL receptor (GILRP) traffics in an AP2-dependent manner from the PM (1) to the PV membrane. (3) PV–PM luminal continuity terminates and a new round of receptor-bound nutrient release mediated by intralumenal acidification ends with further passage to connected ER. (4) The PV is now ready for another round of endocytosis and exchange with the extracellular environment and GILRP is recycled back to the cell’s surface. ER, endoplasmic reticulum; GILRP, giardial putative low-density lipoprotein receptor; LDL, low-density lipoprotein; PM, plasma membrane; PV, peripheral vacuole; TEM, transmission electron microscopy; VSP, variant surface protein. Fact 4: G. lamblia survives in the environment as infectious cysts Completion of the life cycle by transmission of G. lamblia to a new host requires no vectors and is based on the alternation of a vegetative stage, the trophozoite, and an environmentally resistant infectious stage—the cyst. The cyst is the only stage of G. lamblia able to survive outside of the host and is responsible for the initiation of a new infectious cycle. Cyst development may already begin in the small intestine of parasitized hosts when a variable fraction of proliferating trophozoites initiates a cellular differentiation program called encystation [15]. Laboratory protocols for inducing encystation include lipid depletion and an increase in culturing medium pH over a period of ca. 20–24 hours [16]. The assumption is that these conditions mimic decreasing lipid availability and ascending pH gradients naturally present along the gastrointestinal tract. During encystation, flagellated pear-shaped binucleated trophozoites undergo dramatic morphological and biochemical cellular remodeling, culminating in the formation of nonflagellated oval quadrinucleated cysts, surrounded by a cyst wall (CW). The CW is composed of a thick mesh of cyst wall proteins (CWPs) complexed to a unique sugar polymer of β1,3-linked-N-acetylgalactosamine [17] and virtually shields the cyst’s interior from any solvent. Deposition of the CW is a tightly-regulated event that occurs exclusively in encysting trophozoites and requires neogenesis of specialized secretory organelles called ESVs [18]. ESVs traffic, sort, and modify mainly CWPs from their initial site of deposition at the ER en route to the parasite cell’s surface. Elimination of a single CWP by complete gene disruption was shown to abolish CW formation altogether [19]. The exact in vivo stimuli for this process are not yet well known, although recent studies on the dynamics of encystation in animal models point towards a link between high-density focal trophozoite populations in the proximal small intestine and encystation [15]. These findings argue against the natural pH and lipid gradients being the sole external triggers for differentiation. In turn, this raises the interesting possibility that trophozoites can sufficiently alter the local environment to generate conditions favorable for triggering differentiation. Cysts are then shed through host feces and were reported to remain viable for several months in water at temperatures below 10 °C and several weeks at room temperature [20]. Based on experimental gerbil (Meriones ungulatus) infections, the minimal infectious dose is less than 10 cysts [21]. Once viable cysts are ingested, passage through the stomach and physical stimuli (temperature, pH) initiate a cellular program termed excystation in which both host and parasite proteases collaborate to degrade the CW, allowing the short-lived excyzoite to escape and rapidly divide twice to give rise to four trophozoites [22]. In vitro (and most likely in vivo) this process is completed within minutes [23]. Fact 5: Novel rational design-based vaccination strategies against G. lamblia are yielding encouraging results Currently, treatment of giardiasis in humans is based almost exclusively on administration of antiprotozoals belonging to the family of 5-nitroimidazoles, whereas infected animals are treated with benzimidazoles. A crude veterinary vaccine called GiardiaVax for nonchronically infected dogs and cats was already licensed [24]. However, it does not inhibit trophozoite proliferation and in many cases has to be combined with additional drug treatment. In recent years, work done especially by the Lujan group at the Universidad Católica de Córdoba in Argentina has uncovered the potential for variant surface proteins (VSPs) as effective vaccination antigens in companion animals. The entire trophozoite surface is covered by a dense coat of VSP anchored in the plasma membrane with a C-terminal hydrophobic transmembrane anchor sequence. From a repertoire of over 200 homologous genes encoded in the parasite genome, only one VSP is expressed on the surface of every single trophozoite at any given moment. Antigenic switching and regulation of VSP expression were shown to occur by RNAi-like mechanisms that could be perturbed to deregulate VSP production, leading to trophozoites exposing the full VSP panel on their surface [25]. Oral vaccination trials on gerbils showed that animals initially infected with deregulated cells expressing all of the VSPs encoded in their genome are largely protected from challenge infections by Giardia clones that express a unique VSP on their surface or by cysts obtained from infected individuals [25]. The same vaccine was tested on cats and dogs, showing high efficiency in preventing new infections and reducing chronic giardiasis in domestic animals both in experimental and natural infections [26]. These data are based on the rational design of vaccination strategies underpinned by a deep understanding of G. lamblia’s molecular and cell biology and hold great promise for eradication of giardiasis in both animals and humans.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

          Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global Causes of Diarrheal Disease Mortality in Children <5 Years of Age: A Systematic Review

            Estimation of pathogen-specific causes of child diarrhea deaths is needed to guide vaccine development and other prevention strategies. We did a systematic review of articles published between 1990 and 2011 reporting at least one of 13 pathogens in children <5 years of age hospitalized with diarrhea. We included 2011 rotavirus data from the Rotavirus Surveillance Network coordinated by WHO. We excluded studies conducted during diarrhea outbreaks that did not discriminate between inpatient and outpatient cases, reporting nosocomial infections, those conducted in special populations, not done with adequate methods, and rotavirus studies in countries where the rotavirus vaccine was used. Age-adjusted median proportions for each pathogen were calculated and applied to 712 000 deaths due to diarrhea in children under 5 years for 2011, assuming that those observed among children hospitalized for diarrhea represent those causing child diarrhea deaths. 163 articles and WHO studies done in 31 countries were selected representing 286 inpatient studies. Studies seeking only one pathogen found higher proportions for some pathogens than studies seeking multiple pathogens (e.g. 39% rotavirus in 180 single-pathogen studies vs. 20% in 24 studies with 5–13 pathogens, p<0·0001). The percentage of episodes for which no pathogen could be identified was estimated to be 34%; the total of all age-adjusted percentages for pathogens and no-pathogen cases was 138%. Adjusting all proportions, including unknowns, to add to 100%, we estimated that rotavirus caused 197 000 [Uncertainty range (UR) 110 000–295 000], enteropathogenic E. coli 79 000 (UR 31 000–146 000), calicivirus 71 000 (UR 39 000–113 000), and enterotoxigenic E. coli 42 000 (UR 20 000–76 000) deaths. Rotavirus, calicivirus, enteropathogenic and enterotoxigenic E. coli cause more than half of all diarrheal deaths in children <5 years in the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zoonotic potential of Giardia.

              Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a common intestinal parasite of humans and mammals worldwide. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within G. duodenalis. To date eight major genetic groups (assemblages) have been identified, two of which (A and B) are found in both humans and animals, whereas the remaining six (C to H) are host-specific and do not infect humans. Sequence-based surveys of single loci have identified a number of genetic variants (genotypes) within assemblages A and B in animal species, some of which may have zoonotic potential. Multi-locus typing data, however, has shown that in most cases, animals do not share identical multi-locus types with humans. Furthermore, interpretation of genotyping data is complicated by the presence of multiple alleles that generate "double peaks" in sequencing files from PCR products, and by the potential exchange of genetic material among isolates, which may account for the non-concordance in the assignment of isolates to specific assemblages. Therefore, a better understanding of the genetics of this parasite is required to allow the design of more sensitive and variable subtyping tools, that in turn may help unravel the complex epidemiology of this infection. Copyright © 2013. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                27 September 2018
                September 2018
                : 14
                : 9
                : e1007250
                Affiliations
                [001]Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
                Washington University School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-1831-9365
                http://orcid.org/0000-0002-2110-4445
                Article
                PPATHOGENS-D-18-01275
                10.1371/journal.ppat.1007250
                6160191
                30261050
                da21ce93-54cb-4e37-bb8e-679010f67c34
                © 2018 Cernikova et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 1, Tables: 0, Pages: 5
                Funding
                This work was supported by grant number 31003A_166437 awarded to ABH by the Swiss National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Pearls
                Biology and Life Sciences
                Organisms
                Eukaryota
                Protozoans
                Parasitic Protozoans
                Giardia
                Giardia Lamblia
                Biology and Life Sciences
                Parasitology
                Parasite Groups
                Apicomplexa
                Trophozoites
                Biology and Life Sciences
                Organisms
                Eukaryota
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Endoplasmic Reticulum
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Secretory Pathway
                Endoplasmic Reticulum
                Medicine and Health Sciences
                Tropical Diseases
                Neglected Tropical Diseases
                Giardiasis
                Medicine and Health Sciences
                Parasitic Diseases
                Parasitic Intestinal Diseases
                Giardiasis
                Medicine and Health Sciences
                Parasitic Diseases
                Protozoan Infections
                Giardiasis
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Biology and Life Sciences
                Cell Biology
                Extracellular Space

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article