5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ordered and disordered phospholipid domains coexist in membranes containing the calcium pump protein of sarcoplasmic reticulum.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Calcium-Transporting ATPases, metabolism, Fluorescence Polarization, Membrane Lipids, physiology, Membrane Proteins, Phospholipids, Rabbits, Sarcoplasmic Reticulum, enzymology, ultrastructure, Structure-Activity Relationship, Temperature

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Data are presented that lead to an alternative model for the organization and molecular dynamics of lipid molecules near the Ca2+-stimulated, Mg2+-dependent adenosinetriphosphatase (Ca2+-ATPase; ATP phosphohydrolase, EC 3.6.1.3) of sarcoplasmic reticulum. Measurements of the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in progressively delipidated sarcoplasmic reticulum membranes have been quantitatively interpreted in terms of a layer of lipid of high anisotropy (the lipid annulus) coexisting with lipid layers of very low anisotropy. In addition, the Ca2+-ATPase has been reconstituted into pure 1,2-dipentadecanoyl 3-sn-phosphatidylcholine membranes over a range of lipid-to-protein ratios. High-sensitivity differential scanning calorimetry has demonstrated that roughly 30 lipid molecules per Ca2+-ATPase molecule (annular lipids) fail to undergo a calorimetrically detectable phase transition in the temperature range 4-44 degrees C. Roughly 100 lipid molecules beyond the annulus undergo a detectable phase transition at a temperature below the phase transition of pure lipid and with an enthalpy change [4.2 kcal/mol (1 kcal = 4.18 kJ)] about half that observed for pure lipid vesicles (7.7-7.8 kcal/mol). We propose that both the fluorometric and calorimetric data are consistent with a model in which a motionally inhibited lipid annulus is surrounded by a more extensive region of disrupted lipid packing order, which we have called the secondary lipid domain.

          Related collections

          Author and article information

          Comments

          Comment on this article